Trabajos Finales de Graduación
URI permanente para esta colecciónhttp://10.0.96.45:4000/handle/11056/14813
Examinar
Examinando Trabajos Finales de Graduación por Autor "Arias-Andrés, María"
Mostrando 1 - 1 de 1
- Resultados por página
- Opciones de ordenación
Ítem Microbial gene exchange on microplastic particles(University of Potsdam, Germany, 2018) Arias-Andrés, MaríaPlastic pollution is ubiquitous on the planet since several millions of tons of plastic waste enter aquatic ecosystems each year. Furthermore, the amount of plastic produced is expected to increase exponentially shortly. The heterogeneity of materials, additives and physical characteristics of plastics are typical of these emerging contaminants and affect their environmental fate in marine and freshwaters. Consequently, plastics can be found in the water column, sediments or littoral habitats of all aquatic ecosystems. Most of this plastic debris will fragment as a product of physical, chemical and biological forces, producing particles of small size. These particles (< 5mm) are known as “microplastics” (MP). Given their high surface-to-volume ratio, MP stimulate biofouling and the formation of biofilms in aquatic systems. As a result of their unique structure and composition, the microbial communities in MP biofilms are referred to as the “Plastisphere.” While there is increasing data regarding the distinctive composition and structure of the microbial communities that form part of the plastisphere, scarce information exists regarding the activity of microorganisms in MP biofilms. This surface-attached lifestyle is often associated with the increase in horizontal gene transfer (HGT) among bacteria. Therefore, this type of microbial activity represents a relevant function worth to be analyzed in MP biofilms. The horizontal exchange of mobile genetic elements (MGEs) is an essential feature of bacteria. It accounts for the rapid evolution of these prokaryotes and their adaptation to a wide variety of environments. The process of HGT is also crucial for spreading antibiotic resistance and for the evolution of pathogens, as many MGEs are known to contain antibiotic resistance genes (ARGs) and genetic determinants of pathogenicity. In general, the research presented in this Ph.D. thesis focuses on the analysis of HGT and heterotrophic activity in MP biofilms in aquatic ecosystems. The primary objective was to analyze the potential of gene exchange between MP bacterial communities vs. that of the surrounding water, including bacteria from natural aggregates. Moreover, the thesis addressed the potential of MP biofilms for the proliferation of biohazardous bacteria and MGEs from wastewater treatment plants (WWTPs) and associated with antibiotic resistance. Finally, it seeks to prove if the physiological profile of MP biofilms under different limnological conditions is divergent from that of the water communities. Accordingly, the thesis is composed of three independent studies published in peer-reviewed journals. The two laboratory studies were performed using both model and environmental microbial communities. In the field experiment, natural communities from freshwater ecosystems were examined. In Chapter I, the inflow of treated wastewater into a temperate lake was simulated with a concentration gradient of MP particles. The effects of MP on the microbial community structure and the occurrence of integrase 1 (int 1) were followed. The int 1 is a marker associated with mobile genetic elements and known as a proxy for anthropogenic effects on the spread of antimicrobial resistance genes. During the experiment, the abundance of int1 increased in the plastisphere with increasing MP particle concentration, but not in the surrounding water. In addition, the microbial community on MP was more similar to the original wastewater community with increasing microplastic concentrations. Our results show that microplastic particles indeed promote persistence of standard indicators of microbial anthropogenic pollution in natural waters. In Chapter II, the experiments aimed to compare the permissiveness of aquatic bacteria towards model antibiotic resistance plasmid pKJK5, between communities that form biofilms on MP vs. those that are free-living. The frequency of plasmid transfer in bacteria associated with MP was higher when compared to bacteria that are free-living or in natural aggregates. Moreover, comparison increased gene exchange occurred in a broad range of phylogenetically-diverse bacteria. The results indicate a different activity of HGT in MP biofilms, which could affect the ecology of aquatic microbial communities on a global scale and the spread of antibiotic resistance. Finally, in Chapter III, physiological measurements were performed to assess whether microorganisms on MP had a different functional diversity from those in water. General heterotrophic activity such as oxygen consumption was compared in microcosm assays with and without MP, while diversity and richness of heterotrophic activities were calculated by using Biolog® EcoPlates. Three lakes with different nutrient statuses presented differences in MP-associated biomass build up. Functional diversity profiles of MP biofilms in all lakes differed from those of the communities in the surrounding water, but only in the oligo- mesotrophic lake MP biofilms had a higher functional richness compared to the ambient water. The results support that MP surfaces act as new niches for aquatic microorganisms and can affect global carbon dynamics of pelagic environments. Overall, the experimental works presented in Chapters I and II support a scenario where MP pollution affects HGT dynamics among aquatic bacteria. Among the consequences of this alteration is an increase in the mobilization and transfer efficiency of ARGs. Moreover, it supposes that changes in HGT can affect the evolution of bacteria and the processing of organic matter, leading to different catabolic profiles such as demonstrated in Chapter III. The results are discussed in the context of the fate and magnitude of plastic pollution and the importance of HGT for bacterial evolution and the microbial loop, i.e., at the base of aquatic food webs. The thesis supports a relevant role of MP biofilm communities for the changes observed in the aquatic microbiome as a product of intense human intervention.