Desarrollo de una biotinta reforzada con material lignocelulósico con potencial uso en medicina regenerativa
Fecha
2025
Autores
Carvajal Johnson, Isabel Natalia
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional (Costa Rica)
Resumen
Resumen. En los años recientes, se han incrementado los estudios en el uso de nanomateriales en técnicas especializadas de bioimpresión 3D para diversas aplicaciones biomédicas como la medicina regenerativa, la regeneración de tejidos, etc. Se ha detallado el uso de diversos tipos de nanocelulosa para la aplicación en bioimpresión 3D debido a su biocompatibilidad, propiedades mecánicas y reológicas. La mayoría de estudios en bioimpresión 3D detallan el uso de nanofibras obtenidas de manera comercial o producidas de distintos tipos de madera. Sin embargo, existen otras fuentes emergentes de nanofibras y nanocristales de celulosa como residuos agrícolas de banano, piña, maíz, entre otros que podrían ser utilizadas como fuentes de nanocelulosa para aplicación en bioimpresión 3D. Por lo tanto, en este trabajo se busca estudiar el potencial uso del rastrojo de piña como fuente de nanofibras de celulosa para su posterior uso en bioimpresión 3D. El rastrojo de piña se compone por el tallo y las hojas, las cuales se caracterizan por ser altamente fibrosas con un contenido principal de celulosa, lignina y hemicelulosa. Este material es comúnmente llamado PALF (Pineapple Leaf Fiber, por sus siglas en ingles) y se compone mayoritariamente de celulosa. Debido a las propiedades físicas y químicas de la celulosa del PALF, se ha demostrado un potencial de aprovechamiento de este residuo al poderse obtener materiales de interés como las nanofibras (CNF). En este trabajo se utilizó PALF como materia prima para la extracción y caracterización de CNF para su posterior evaluación como potencial biomaterial en la bioimpresión 3D. Se lograron obtener CNF blanqueada de residuo de PALF a partir de un pretratamiento oxidativo mediado por reactivo TEMPO y una degradación mecánica a alta presión, a las cuales se estudiaron sus características físicas y químicas para demostrar la remoción adecuada de lignina, extraíbles y demás componentes de la PALF. Posteriormente, se formó un hidrogel en suspensión acuosa con alcohol polivinílico (PVA) a dos distintas concentraciones y se estudiaron sus propiedades reológicas, las cuales demostraron un comportamiento adecuado para su extrusión en la impresión 3D. Los hidrogeles formados fueron estudiados en una bioimpresora 3D, donde se logró imprimir estructuras variadas a distintas presiones y velocidades de impresión. El hinchamiento, comportamiento de degradación y porosidad demostraron su potencial para uso en aplicaciones como regeneración de tejidos, medicina regenerativa y demás. Se realizaron pruebas de biocompatibilidad in vitro de acuerdo a la norma ISO 10993-5, donde se demostró una alta viabilidad y crecimiento celular de células fibroblastos en las estructuras impresas de CNF obtenida de PALF y PVA.
In recent years, there has been an increase in studies on the use of nanomaterials in specialised 3D bioprinting techniques for various biomedical applications such as regenerative medicine, tissue regeneration, etc. The use of various types of nanocellulose for application in 3D bioprinting has been detailed due to its biocompatibility, mechanical and rheological properties. Most studies on 3D bioprinting detail the use of nanofibres obtained commercially or produced from different types of wood. However, there are other emerging sources of cellulose nanofibres and nanocrystals, such as agricultural waste from bananas, pineapples, corn, among others, that could be used as sources of nanocellulose for application in 3D bioprinting. Therefore, this study seeks to investigate the potential use of pineapple straw as a source of cellulose nanofibres for subsequent use in 3D bioprinting. Pineapple straw consists of the stem and leaves, which are highly fibrous and mainly composed of cellulose, lignin, and hemicellulose. This material is commonly referred to as PALF (Pineapple Leaf Fibre) and is mainly composed of cellulose. Due to the physical and chemical properties of PALF cellulose, this waste has been shown to have potential for use in obtaining materials of interest such as nanofibres (CNF). In this work, PALF was used as a raw material for the extraction and characterisation of CNF for subsequent evaluation as a potential biomaterial in 3D bioprinting. Bleached CNF was obtained from PALF residue through oxidative pretreatment mediated by TEMPO reagent and high-pressure mechanical degradation. Its physical and chemical characteristics were studied to demonstrate the adequate removal of lignin, extractives, and other components of PALF. Subsequently, a hydrogel was formed in aqueous suspension with polyvinyl alcohol (PVA) at two different concentrations, and its rheological properties were studied, which demonstrated adequate behaviour for extrusion in 3D printing. The hydrogels formed were studied in a 3D bioprinter, where various structures were printed at different pressures and printing speeds. The swelling, degradation behaviour and porosity demonstrated their potential for use in applications such as tissue regeneration, regenerative medicine and others. Tests were carried out on in vitro biocompatibility according to ISO 10993-5, where high viability and cell growth of fibroblasts were demonstrated in the printed CNF structures obtained from PALF and PVA.
In recent years, there has been an increase in studies on the use of nanomaterials in specialised 3D bioprinting techniques for various biomedical applications such as regenerative medicine, tissue regeneration, etc. The use of various types of nanocellulose for application in 3D bioprinting has been detailed due to its biocompatibility, mechanical and rheological properties. Most studies on 3D bioprinting detail the use of nanofibres obtained commercially or produced from different types of wood. However, there are other emerging sources of cellulose nanofibres and nanocrystals, such as agricultural waste from bananas, pineapples, corn, among others, that could be used as sources of nanocellulose for application in 3D bioprinting. Therefore, this study seeks to investigate the potential use of pineapple straw as a source of cellulose nanofibres for subsequent use in 3D bioprinting. Pineapple straw consists of the stem and leaves, which are highly fibrous and mainly composed of cellulose, lignin, and hemicellulose. This material is commonly referred to as PALF (Pineapple Leaf Fibre) and is mainly composed of cellulose. Due to the physical and chemical properties of PALF cellulose, this waste has been shown to have potential for use in obtaining materials of interest such as nanofibres (CNF). In this work, PALF was used as a raw material for the extraction and characterisation of CNF for subsequent evaluation as a potential biomaterial in 3D bioprinting. Bleached CNF was obtained from PALF residue through oxidative pretreatment mediated by TEMPO reagent and high-pressure mechanical degradation. Its physical and chemical characteristics were studied to demonstrate the adequate removal of lignin, extractives, and other components of PALF. Subsequently, a hydrogel was formed in aqueous suspension with polyvinyl alcohol (PVA) at two different concentrations, and its rheological properties were studied, which demonstrated adequate behaviour for extrusion in 3D printing. The hydrogels formed were studied in a 3D bioprinter, where various structures were printed at different pressures and printing speeds. The swelling, degradation behaviour and porosity demonstrated their potential for use in applications such as tissue regeneration, regenerative medicine and others. Tests were carried out on in vitro biocompatibility according to ISO 10993-5, where high viability and cell growth of fibroblasts were demonstrated in the printed CNF structures obtained from PALF and PVA.
Descripción
Carvajal Johnson, I. N. (2025). Desarrollo de una biotinta reforzada con material lignocelulósico con potencial uso en medicina regenerativa. [Tesis de Licenciatura]. Universidad Nacional, Heredia, Costa Rica.
Palabras clave
FIBRAS NATURALES, PIÑA, REGENERACIÓN BIOLÓGICA, NANOTECNOLOGÍA, MATERIALES, PINEAPPLE, NANOTECHNOLOGY