Logotipo del repositorio
 

A Microscopic Model for a One Parameter Class of Fractional Laplacians with Dirichlet Boundary Conditions

Fecha

2021

Autores

Bernardin, Cèdric
Gonçalves, Patrícia
Jiménez-Oviedo, Byron

Título de la revista

ISSN de la revista

Título del volumen

Editor

Springer Science and Business Media Deutschland GmbH

Resumen

We prove the hydrodynamic limit for the symmetric exclusion process with long jumps given by a mean zero probability transition rate with infinite variance and in contact with infinitely many reservoirs with density α at the left of the system and β at the right of the system. The strength of the reservoirs is ruled by κN−θ > 0. Here N is the size of the system, κ > 0 and θ ∈ R. Our results are valid for θ ≤ 0. For θ = 0, we obtain a collection of fractional reaction–diffusion equations indexed by the parameter κ and with Dirichlet boundary conditions. Their solutions also depend on κ. For θ < 0, the hydrodynamic equation corresponds to a reaction equation with Dirichlet boundary conditions. The case θ > 0 is still open. For that reason we also analyze the convergence of the unique weak solution of the equation in the case θ = 0 when we send the parameter κ to zero. Indeed, we conjecture that the limiting profile when κ → 0 is the one that we should obtain when taking small values of θ > 0
Demostramos el límite hidrodinámico para el proceso de exclusión simétrica con saltos largos dado por una tasa de transición de probabilidad cero media con varianza infinita y en contacto con infinitos reservorios con densidad α a la izquierda del sistema y β a la derecha del sistema. La fuerza de los reservorios se rige por κN − θ> 0. Aquí N es el tamaño del sistema, κ> 0 y θ ∈ R. Nuestros resultados son válidos para θ ≤ 0. Para θ = 0, obtenemos una colección de ecuaciones fraccionales de reacción-difusión indexadas por el parámetro κ y con las condiciones de contorno de Dirichlet. Sus soluciones también dependen de κ. Para θ <0, la ecuación hidrodinámica corresponde a una ecuación de reacción con condiciones de contorno de Dirichlet. El caso θ> 0 todavía está abierto. Por eso también analizamos la convergencia de la única solución débil de la ecuación en el caso θ = 0 cuando enviamos el parámetro κ a cero. De hecho, conjeturamos que el perfil límite cuando κ → 0 es el que deberíamos obtener al tomar valores pequeños de θ> 0

Descripción

Palabras clave

HYDRODYNAMIC LIMIT, HEAT EQUATIONS, BONDARY CONDITIONS, MODELOS MATEMÁTICOS, ECUACIONES DIFERENCIALES

Citación