Adaptación del método de descarga de arco voltaico para la síntesis de nanotubos de carbono de pared simple
Fecha
2009-11
Autores
Ramírez Amador, Sergio Alberto
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional (Costa Rica)
Resumen
Los nanotubos de carbono fueron descubiertos por el físico japonés Sumio lijima en 1991. Sus propiedades físicas y químicas catalogadas como extraordinarias, siguen demostrando gran potencial en multitud de campos.
Los nanotubos de carbono son tubos diminutos, basados únicamente en átomos de carbono. Poseen un diámetro de apenas unos pocos nanómetros, sin embargo, su longitud puede ser de hasta un milímetro, (dispone de una relación longitud: diámetro hasta ahora sin precedentes). Están formados a partir de una o varias láminas de grafeno enrolladas sobre sí mismas en forma cilíndrica. Algunos nanotubos están cerrados por media esfera de fulereno y no están cerrados. Existen nanotubos monocapa (NTCPS, un sólo tubo) y multicapa (varios tubos concéntricos). Los nanotubos de una sola capa se llaman nanotubos de carbono de pared simple (Single-Wall Nanotube, SWNT, inglés) y los de varias capas, nanotubos de carbono de multipared, NTCPM, (Multi-Walled Nanotubes, MWNT, en inglés).
Debido a la forma en que los átomos de carbono se enlazan en las estructuras de los nanotubos, éstos son muy fuertes. Incluso más fuertes que los diamantes, que poseen también una estructura tridimensional basada principalmente de átomos de carbono. Estos nanotubos son las fibras más fuertes conocidas, un sólo nanotubo perfecto es cerca de 10 a 100 veces más fuerte que el acero por unidad de peso.
La investigación sobre nanotubos de carbono es interesante por sus múltiples aplicaciones y posibilidades, pero a la vez compleja por la variedad de sus propiedades electrónicas, térmicas y estructurales que cambian según el diámetro, la longitud, la forma de enrollar y otros.
Los nanotubos de carbono, además de ser muy resistentes, poseen propiedades eléctricas interesantes, pues pueden comportarse como conductores o semiconductores de electricidad según el acomodamiento de sus átomos.
En el presente proyecto, se buscó la optimización de la metodología encontrada en la literatura para la síntesis de nanotubos de carbono de pared simple por descarga de arco voltaico. Para alcanzar esta optimización, se sintetizaron distintas muestras de NTCPS bajo la modificación de las variables del proceso. Las variables estudiadas fueron la corriente eléctrica de la fuente de poder, presión y tipo de gas.
Las sintetizadas fueron caracterizadas por análisis termogravimétrico (TGA), microscopia de fuerza atómica (AFM), microscopia de transmisión electrónica (TEM), microscopia de barrido electrónico (SEM) y por análisis de infrarrojo con transformada de Fourier (FTIR). El fin fue el de corroborar la existencia de NTCPS y su grado de pureza.
Carbon nanotubes were discovered by the Japanese physicist Sumio Lijima in 1991. Their physical and chemical properties, classified as extraordinary, continue to show great potential in many fields. Carbon nanotubes are tiny tubes, based solely on carbon atoms. They have a diameter of just a few nanometers, however, their length can be up to a millimeter, (it has a length: diameter ratio hitherto unprecedented). They are formed from one or several sheets of graphene rolled on themselves in a cylindrical shape. Some nanotubes are closed by a fullerene half sphere and are not closed. There are monolayer nanotubes (NTCPS, a single tube) and multilayer (several concentric tubes). Single-layer nanotubes are called single-walled carbon nanotubes (SWNT) and multi-layered ones are called multi-walled carbon nanotubes, NTCPM, (Multi-Walled Nanotubes, MWNT). Because of the way carbon atoms are linked in nanotube structures, they are very strong. Even stronger than diamonds, which also have a three-dimensional structure based mainly on carbon atoms. These nanotubes are the strongest fibers known, a single perfect nanotube being about 10 to 100 times stronger than steel per unit weight. Research on carbon nanotubes is interesting due to its multiple applications and possibilities, but at the same time complex due to the variety of its electronic, thermal, and structural properties that change depending on their diameter, length, the way they are rolled, and others. Carbon nanotubes, in addition to being very resistant, have interesting electrical properties, since they can behave as conductors or semiconductors of electricity depending on the arrangement of their atoms. In the present project, the optimization of the methodology found in the literature for the synthesis of single-walled carbon nanotubes by electric arc discharge was sought. To achieve this optimization, different NTCPS samples were synthesized under the modification of the process variables. The variables studied were the electric current of the power source, pressure and type of gas. Those synthesized were characterized by thermogravimetric analysis (TGA), atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and by Fourier transform infrared (FTIR) analysis. The purpose was to corroborate the existence of NTCPS and its degree of purity.
Carbon nanotubes were discovered by the Japanese physicist Sumio Lijima in 1991. Their physical and chemical properties, classified as extraordinary, continue to show great potential in many fields. Carbon nanotubes are tiny tubes, based solely on carbon atoms. They have a diameter of just a few nanometers, however, their length can be up to a millimeter, (it has a length: diameter ratio hitherto unprecedented). They are formed from one or several sheets of graphene rolled on themselves in a cylindrical shape. Some nanotubes are closed by a fullerene half sphere and are not closed. There are monolayer nanotubes (NTCPS, a single tube) and multilayer (several concentric tubes). Single-layer nanotubes are called single-walled carbon nanotubes (SWNT) and multi-layered ones are called multi-walled carbon nanotubes, NTCPM, (Multi-Walled Nanotubes, MWNT). Because of the way carbon atoms are linked in nanotube structures, they are very strong. Even stronger than diamonds, which also have a three-dimensional structure based mainly on carbon atoms. These nanotubes are the strongest fibers known, a single perfect nanotube being about 10 to 100 times stronger than steel per unit weight. Research on carbon nanotubes is interesting due to its multiple applications and possibilities, but at the same time complex due to the variety of its electronic, thermal, and structural properties that change depending on their diameter, length, the way they are rolled, and others. Carbon nanotubes, in addition to being very resistant, have interesting electrical properties, since they can behave as conductors or semiconductors of electricity depending on the arrangement of their atoms. In the present project, the optimization of the methodology found in the literature for the synthesis of single-walled carbon nanotubes by electric arc discharge was sought. To achieve this optimization, different NTCPS samples were synthesized under the modification of the process variables. The variables studied were the electric current of the power source, pressure and type of gas. Those synthesized were characterized by thermogravimetric analysis (TGA), atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and by Fourier transform infrared (FTIR) analysis. The purpose was to corroborate the existence of NTCPS and its degree of purity.
Descripción
Ramírez Amador, S. A. (2009). Adaptación del método de descarga de arco voltaico para la síntesis de nanotubos de carbono de pared simple. [Tesis de Licenciatura]. Universidad Nacional, Heredia, C.R.
Palabras clave
NANOTECNOLOGIA, NANOTECHNOLOGY, CARBONO, ATOMOS, ATOMS