Comparación entre el procesamiento en paralelo de un microprocesador de doble núcleo y las tarjetas de video GPGPU de la marca NVIDIA utilizando el método Backpropagation de redes neuronales
dc.contributor.advisor | Ramírez Jiménez, Eddy | |
dc.contributor.author | Herrera Carmona, Yeison Francisco | |
dc.date.accessioned | 2023-11-03T22:24:17Z | |
dc.date.available | 2023-11-03T22:24:17Z | |
dc.date.issued | 2017 | |
dc.description | Herrera Carmona, Y. F. [2017]. Comparación entre el procesamiento en paralelo de un microprocesador de doble núcleo y las tarjetas de video GPGPU de la marca NVIDIA utilizando el método Backpropagation de redes neuronales. [Tesis de Licenciatura]. Universidad Nacional, Heredia, Costa Rica. | es_ES |
dc.description.abstract | The following document makes reference to the study of a dual core multiprocessor and the GPGPU board (General Purpose Graphical Processor Unit) also known as GPU (Graphical Processor Unit). It studies the parallel processing capacity. In order to evaluate that capacity, algebraic algorithms will be used. To be specific, the networking model used will be the so called Backpropagation. This algorithm will only be used as a tool to measure the processing levels since this thesis is not getting too deep into this algorithm. Additionally, an experiment is presented in order to broaden in a more scientific way with the application of statistics like the use of the variance with the purpose of reinforcing the comparison among the Intel processor and the NVIDIA GPU board. For doing this comparison, the null hypothesis “H0” will be taken into account. The processor against GPU does not present any difference compared to the BackPropagation algorithm and its contrast, the alternative hypothesis “H1”. The processors against GPU present a difference on the algorithm backpropagation. | es_ES |
dc.description.abstract | El siguiente documento hace referencia al estudio de un multiprocesador de doble núcleo y la placa GPGPU (Unidad de Procesador Gráfico de Propósito General) también conocida como GPU (Unidad de Procesador Gráfico). Estudia la capacidad de procesamiento paralelo. Para evaluar esa capacidad se utilizarán algoritmos algebraicos. En concreto, el modelo de red utilizado será el llamado Backpropagation. Este algoritmo sólo se utilizará como herramienta para medir los niveles de procesamiento ya que esta tesis no profundiza demasiado en este algoritmo. Además, se presenta un experimento con el fin de ampliar de manera más científica la aplicación de estadísticas como el uso de la varianza con el fin de reforzar la comparación entre el procesador Intel y la placa GPU NVIDIA. Para realizar esta comparación se tendrá en cuenta la hipótesis nula “H0”. El procesador versus GPU no presenta ninguna diferencia respecto al algoritmo BackPropagation y su contraste, la hipótesis alternativa “H1”. Los procesadores frente a GPU presentan una diferencia en el algoritmo de retropropagación. | es_ES |
dc.description.procedence | Escuela de Informática | es_ES |
dc.description.sponsorship | Universidad Nacional, Costa Rica | es_ES |
dc.identifier.other | TESIS 11340 | |
dc.identifier.uri | http://hdl.handle.net/11056/26806 | |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad de Nacional (Costa Rica) | es_ES |
dc.rights | Acceso embargado | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject | MICROPROCESADORES | es_ES |
dc.subject | VIDEOGRABACIONES | es_ES |
dc.subject | INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject | ALGORITMOS | es_ES |
dc.subject | ALGORITHMS | es_ES |
dc.subject | ARTIFICIAL INTELLIGENCE | es_ES |
dc.title | Comparación entre el procesamiento en paralelo de un microprocesador de doble núcleo y las tarjetas de video GPGPU de la marca NVIDIA utilizando el método Backpropagation de redes neuronales | es_ES |
dc.type | http://purl.org/coar/resource_type/c_7a1f | es_ES |
una.tesis.numero | 11340 | es_ES |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Tesis GPGPU Vr CPU Yeisson Herrera Carmona 206500915 (1).pdf
- Tamaño:
- 3.15 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 919 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: