Exposición ocupacional a plomo en agentes policiales que supervisan pruebas prácticas en polígonos de tiro en Costa Rica
Fecha
2019
Autores
Ramírez Arias, Jorge
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional, Costa Rica
Resumen
A pesar de que estudios alrededor del mundo han evidenciado que los polígonos de tiro constituyen centros de trabajo con altos niveles de exposición al plomo, pocos estudios en América Latina han examinado la exposición ocupacional y sus efectos en la salud de quienes laboran en estos centros. Los objetivos de este estudio fueron: (i) evaluar la exposición a plomo en agentes de la Fuerza Pública que supervisan prácticas en polígonos de tiro, (ii) identificar los factores socio-demográficos y ocupacionales asociados con esta exposición, y (iii) examinar la asociación entre la exposición ocupacional a plomo y los efectos en la salud percibidos por los trabajadores. En este estudio, cuyo trabajo de campo se realizó entre febrero y abril del 2018, se incluyó a la totalidad de los agentes policiales de la Fuerza Pública que realizaban labores de supervisión de prácticas de tiro en los polígonos privados en Costa Rica (n = 22). Se recolectaron una (n = 10 trabajadores) o dos (n = 11) muestras de sangre de los agentes durante el período del estudio (tiempo entre toma de muestras de sangre = 30 días exactos). También se recolectaron una (n = 6) o dos (n = 7) muestras personales de plomo en aire de los agentes que realizaron supervisiones de prácticas de tiro en 2 polígonos cerrados y 2 abiertos. Estos 4 polígonos fueron seleccionados por conveniencia de un total de 25 polígonos de tiro privados que existen en Costa Rica. Además, se recolectaron 12 muestras de plomo en superficies de estos 4 polígonos y se evaluó el sistema de ventilación en los polígonos de tiro cerrados. Las concentraciones de plomo en aire, sangre y superficies fueron cuantificadas utilizando espectrofotometría de absorción atómica. Las características socio-demográficas y ocupacionales de los trabajadores fueron evaluadas a través de la administración de un cuestionario estructurado y mediante observaciones puntuales en los polígonos de tiro durante la supervisión de las prácticas. La presencia de síntomas de intoxicación por plomo y otras condiciones médicas que se han visto asociadas con la exposición a plomo también fueron evaluadas a través de un cuestionario administrado. Las concentraciones personales de plomo en aire y sangre presentaron medias geométricas (MG) de 34.5 μg/m3 [desviación estándar geométrica (DEG) = 2.4] y 1.0 μg/dL (2.6), respectivamente, y no se correlacionaron entre sí. Los principales predictores de las concentraciones de plomo en aire fueron el realizar tiros de práctica al finalizar la supervisión [MG de quienes realizaban tiros de práctica /MG de quienes no realizaban tiros de práctica (grupo de referencia) = 2.27 (intervalo de confianza (IC) 95% = 1.34, 3.81)] y la velocidad del viento dentro del polígono [cambio en las concentraciones de plomo por cada incremento de 1 m/s en la velocidad del viento = 0.80 (IC 95% = 0.65, 0.99)]. Las concentraciones personales de plomo en aire más altas se asociaron con pérdida de peso en el último año [ORajustado (IC 95%) = 1.75 (1.00, 3.06)], pero no con los otros efectos en la salud. Un 30% de las muestras de sangre contenían concentraciones de plomo por debajo del límite de detección (0.45 μg/dL) y todas las concentraciones se encontraban por debajo del Índice Biológico de Exposición (BEI = 30 μg/dL). Los principales predictores de las concentraciones de plomo en sangre fueron el laborar en la Escuela Nacional de Policías [MG de quienes laboraban en la Escuela Nacional de Policías/MG de quienes laboraban en la Unidad Operativa de Armas y Explosivos = 3.18 (IC 95%: 1.34, 7.52)], el consumir alimentos en el polígono [MG de quienes consumían alimentos/MG del grupo no lo hacía = 1.91 (IC 95%: 1.01, 3.61)] y la edad del trabajador [cambio en las concentraciones de plomo por cada incremento de cinco años de edad = 1.16 (IC 95%: 1.00, 1.34)]. No se observaron asociaciones entre las concentraciones de plomo en sangre y síntomas de intoxicación por plomo u otras condiciones médicas. Las concentraciones de plomo en superficies mostraron una MG (DEG) de 1.1 μg/cm2 (4.7) y un rango de 0.002-5.5 μg/cm2. Los polígonos cerrados presentaron concentraciones de plomo en superficies más altas que los polígonos abiertos [MG (DEG) = 1.5 μg/cm2 (3.8) y 0.8 μg/cm2 (5.8), respectivamente]. Se determinó que los sistemas de ventilación en polígonos cerrados presentaban condiciones no óptimas para el adecuado control de la exposición al plomo. Los hallazgos del presente estudio sugieren la necesidad de implementar tanto controles ingenieriles como administrativos en los polígonos de tiro (e.g., cambio de tipo de munición, sistemas de ventilación certificados, uso de equipo de protección personal, rotación del personal) para reducir la exposición al plomo y prevenir efectos a futuro en la salud de los oficiales que supervisan pruebas de tiro en estos sitios
Although studies around the world have shown that shooting ranges are sources of lead exposure, few studies in Latin America have examined occupational exposure to lead in shooting ranges and their health effects. This study aimed to: (i) evaluate lead exposure in Public Force agents that supervise practices in shooting ranges, (ii) identify socio-demographic and occupational factors associated with lead exposure in these workers, and (iii) examine the association between occupational lead exposure and health effects reported by workers. In this study, whose fieldwork was conducted between February and April of 2018, all Public Force agents who supervised practices in private shooting ranges in Costa Rica were included (n = 22). One (n = 10 workers) or two (n = 11) blood samples were collected from police officers during the study period (time between blood sample collection = exactly 30 days). One (n = 6) or two (n = 7) personal air samples were also collected from the agents who supervised shooting practices in 2 indoor and 2 open ranges. These four shooting ranges were a convenience sample from the 25 private ranges that currently exist in Costa Rica. In addition, 12 surface dust samples were collected from these 4 shooting ranges and an assessment of the ventilation system was conducted in closed shooting ranges. Air, blood, and surface dust lead concentrations were quantified using atomic absorption spectrophotometry. Data on workers’ socio-demographic and occupational characteristics were collected using a structured questionnaire and conducting observations during the shooting practices. Information on symptoms of lead poisoning and other medical conditions that have been associated with lead exposure was gathered using structured questionnaires. Geometric mean [GM, geometric standard deviation (GSD)] personal air and blood lead concentrations were 34.5 μg/m3 (2.4) and 1.0 μg/dL (2.6), respectively. These concentrations were not correlated with each other. Main predictors of air lead concentrations were making practice shots at the end of shooting practice supervision [GM for those who made shots at the end of practice supervision/GM for those who did not make shots (reference group) = 2.27 (95% confidence interval (CI) = 1.34, 3.81)] and wind speed at the range [change in lead concentrations per 1 m/s-increase in wind speed = 0.80 (95% CI = 0.65, 0.99)]. Higher personal air lead concentrations were associated with self-reported weight loss in the last year [OR adjusted (95% CI) = 1.75 (1.00, 3.06)], but not with other health effects reported by the workers. About 30% of the blood samples had lead concentrations below the limit of detection (LOD = 0.45 μg/dL) and all blood lead concentrations were below the Biological Exposure Index (BEI = 30 μg/dL). Main predictors of blood lead concentrations were working in the National Police School (specific unit within the Public Force) [GM for those who worked in the National Police School/GM for those who worked in the Weapons and Explosives Operative Unit (reference group) = 3.18 (95% CI: 1.34, 7.52)], eating in the shooting range [GM for those who ate at the range/GM for those who did not eat at range =1.91 (95% CI: 1.01, 3.61)], and age [change in lead concentrations per five-years increase in age = 1.16 (95% CI: 1.00, 1.34)]. Null associations of blood lead concentrations with symptoms of lead poisoning or other medical conditions were observed. Concentrations of lead in surface dust had a GM (GSD) of 1.1 μg/cm2 (4.7) and ranged between <0.002-5.5 μg/cm2. Closed shooting ranges showed higher surface dust lead concentrations than open ranges [GM (GSD) = 1.5 μg/cm2 (3.8) and 0.8 μg/cm2 (5.8), respectively]. Ventilation systems in closed ranges did not have optimal conditions for the adequate control of lead exposure. Findings from the present study suggest the need to implement both engineering and administrative controls in shooting ranges (e.g., change in type of ammunition, certified ventilation systems) to reduce lead exposure and prevent adverse health effects in officers who supervise shooting tests at these sites
Although studies around the world have shown that shooting ranges are sources of lead exposure, few studies in Latin America have examined occupational exposure to lead in shooting ranges and their health effects. This study aimed to: (i) evaluate lead exposure in Public Force agents that supervise practices in shooting ranges, (ii) identify socio-demographic and occupational factors associated with lead exposure in these workers, and (iii) examine the association between occupational lead exposure and health effects reported by workers. In this study, whose fieldwork was conducted between February and April of 2018, all Public Force agents who supervised practices in private shooting ranges in Costa Rica were included (n = 22). One (n = 10 workers) or two (n = 11) blood samples were collected from police officers during the study period (time between blood sample collection = exactly 30 days). One (n = 6) or two (n = 7) personal air samples were also collected from the agents who supervised shooting practices in 2 indoor and 2 open ranges. These four shooting ranges were a convenience sample from the 25 private ranges that currently exist in Costa Rica. In addition, 12 surface dust samples were collected from these 4 shooting ranges and an assessment of the ventilation system was conducted in closed shooting ranges. Air, blood, and surface dust lead concentrations were quantified using atomic absorption spectrophotometry. Data on workers’ socio-demographic and occupational characteristics were collected using a structured questionnaire and conducting observations during the shooting practices. Information on symptoms of lead poisoning and other medical conditions that have been associated with lead exposure was gathered using structured questionnaires. Geometric mean [GM, geometric standard deviation (GSD)] personal air and blood lead concentrations were 34.5 μg/m3 (2.4) and 1.0 μg/dL (2.6), respectively. These concentrations were not correlated with each other. Main predictors of air lead concentrations were making practice shots at the end of shooting practice supervision [GM for those who made shots at the end of practice supervision/GM for those who did not make shots (reference group) = 2.27 (95% confidence interval (CI) = 1.34, 3.81)] and wind speed at the range [change in lead concentrations per 1 m/s-increase in wind speed = 0.80 (95% CI = 0.65, 0.99)]. Higher personal air lead concentrations were associated with self-reported weight loss in the last year [OR adjusted (95% CI) = 1.75 (1.00, 3.06)], but not with other health effects reported by the workers. About 30% of the blood samples had lead concentrations below the limit of detection (LOD = 0.45 μg/dL) and all blood lead concentrations were below the Biological Exposure Index (BEI = 30 μg/dL). Main predictors of blood lead concentrations were working in the National Police School (specific unit within the Public Force) [GM for those who worked in the National Police School/GM for those who worked in the Weapons and Explosives Operative Unit (reference group) = 3.18 (95% CI: 1.34, 7.52)], eating in the shooting range [GM for those who ate at the range/GM for those who did not eat at range =1.91 (95% CI: 1.01, 3.61)], and age [change in lead concentrations per five-years increase in age = 1.16 (95% CI: 1.00, 1.34)]. Null associations of blood lead concentrations with symptoms of lead poisoning or other medical conditions were observed. Concentrations of lead in surface dust had a GM (GSD) of 1.1 μg/cm2 (4.7) and ranged between <0.002-5.5 μg/cm2. Closed shooting ranges showed higher surface dust lead concentrations than open ranges [GM (GSD) = 1.5 μg/cm2 (3.8) and 0.8 μg/cm2 (5.8), respectively]. Ventilation systems in closed ranges did not have optimal conditions for the adequate control of lead exposure. Findings from the present study suggest the need to implement both engineering and administrative controls in shooting ranges (e.g., change in type of ammunition, certified ventilation systems) to reduce lead exposure and prevent adverse health effects in officers who supervise shooting tests at these sites
Descripción
Palabras clave
ENSEÑANZA, ARMAS DE FUEGO, SALUD OCUPACIONAL, SEGURIDAD LABORAL, TEACHING, FIREARMS, OCCUPATIONAL HEALTH, JOB SECURITY, CONTAMINANTES, PLOMO