A RTk− Pk approximation for linear elasticity yielding a broken H (div) convergent postprocessed stress
dc.contributor.author | Gatica, Gabriel N. | |
dc.contributor.author | Gatica, Luis F. | |
dc.contributor.author | Sequeira, Filander | |
dc.date.accessioned | 2025-06-05T20:39:28Z | |
dc.date.available | 2025-06-05T20:39:28Z | |
dc.date.issued | 2015 | |
dc.description.abstract | We present a non-standard mixed finite element method for the linear elasticity problem in Rn with non-homogeneous Dirichlet boundary conditions. More precisely, our approach is based on a simplified interpretation of the pseudostress–displacement formulation originally proposed in Arnold and Falk (1988), which does not require symmetric tensor spaces in the finite element discretization. We apply the classical Babuˇska–Brezzi theory to prove that the corresponding continuous and discrete schemes are well-posed. In particular, Raviart–Thomas spaces of order k ≥ 0 for the pseudostress and piecewise polynomials of degree ≤k for the displacement can be utilized. In addition, complementing the results in the aforementioned reference, we introduce a new postprocessing formula for the stress recovering the optimally convergent approximation of the broken H(div)-norm. Numerical results confirm our theoretical findings. | |
dc.description.procedence | Escuela de Matemática | |
dc.description.sponsorship | Universidad Nacional, Costa Rica | |
dc.identifier.uri | https://hdl.handle.net/11056/31441 | |
dc.language.iso | eng | |
dc.publisher | Elsevier, España | |
dc.rights | Acceso abierto | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | Applied Mathematics Letters. Vol 49 pp. 133-140 (2015) | |
dc.subject | FORMULATION | |
dc.subject | MATHEMATICS | |
dc.subject | LINEAR PROGRAMATION | |
dc.subject | ELASTICITY | |
dc.title | A RTk− Pk approximation for linear elasticity yielding a broken H (div) convergent postprocessed stress | |
dc.type | http://purl.org/coar/resource_type/c_6501 |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- 1-s2.0-S0893965915001743-main.pdf
- Tamaño:
- 772.42 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 919 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: