Logotipo del repositorio
 

A RTk− Pk approximation for linear elasticity yielding a broken H (div) convergent postprocessed stress

dc.contributor.authorGatica, Gabriel N.
dc.contributor.authorGatica, Luis F.
dc.contributor.authorSequeira, Filander
dc.date.accessioned2025-06-05T20:39:28Z
dc.date.available2025-06-05T20:39:28Z
dc.date.issued2015
dc.description.abstractWe present a non-standard mixed finite element method for the linear elasticity problem in Rn with non-homogeneous Dirichlet boundary conditions. More precisely, our approach is based on a simplified interpretation of the pseudostress–displacement formulation originally proposed in Arnold and Falk (1988), which does not require symmetric tensor spaces in the finite element discretization. We apply the classical Babuˇska–Brezzi theory to prove that the corresponding continuous and discrete schemes are well-posed. In particular, Raviart–Thomas spaces of order k ≥ 0 for the pseudostress and piecewise polynomials of degree ≤k for the displacement can be utilized. In addition, complementing the results in the aforementioned reference, we introduce a new postprocessing formula for the stress recovering the optimally convergent approximation of the broken H(div)-norm. Numerical results confirm our theoretical findings.
dc.description.procedenceEscuela de Matemática
dc.description.sponsorshipUniversidad Nacional, Costa Rica
dc.identifier.urihttps://hdl.handle.net/11056/31441
dc.language.isoeng
dc.publisherElsevier, España
dc.rightsAcceso abierto
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceApplied Mathematics Letters. Vol 49 pp. 133-140 (2015)
dc.subjectFORMULATION
dc.subjectMATHEMATICS
dc.subjectLINEAR PROGRAMATION
dc.subjectELASTICITY
dc.titleA RTk− Pk approximation for linear elasticity yielding a broken H (div) convergent postprocessed stress
dc.typehttp://purl.org/coar/resource_type/c_6501

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
1-s2.0-S0893965915001743-main.pdf
Tamaño:
772.42 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
919 B
Formato:
Item-specific license agreed upon to submission
Descripción: