Nanotransportadores de ácidos nucleicos a base de complejos polímero-fosfolípidos
Fecha
2023
Autores
Badilla Núñez, Jeffry
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional (Costa Rica)
Resumen
Resumen. Los recientemente avances tecnológicos y científicos buscan el desarrollo de nuevos vehículos que permitan el transporte, protección y liberación de moléculas bioactivas que resulten eficaces y seguros para aun posible tratamiento terapéutico. En el presente trabajo de investigación se desarrolló un nanosistema a base de biopolímero y fosfolípidos, el cual tiene gran potencial en la vehiculación de los ácidos nucleicos. Primeramente, se prepararon mezclas de los fosfolípidos 1,2-dipalmitoil-sn-glicero-3-fosfocolina (DPPC) y N- (carbonil-metoxipolietilenglicol 2000) -1,2-diestearoil-sn-glicero-3-fosfoetanolamina, sal sódica (PE 18:0/18:0-PEG 2000 o PE-PEG2000) a diferentes relaciones molares en buffer de ácido hidroxietilpiperazinetanosulfónico (HEPES) y se caracterizaron respecto a tamaño de partícula y potencial zeta por la técnica de dispersión de luz dinámica (DLS). Los resultados obtenidos muestran tamaños entre 125 y 175 nm y un potencial zeta entre -11 y -15 mV. Estos resultados se complementaron por medio de las técnicas de microscopía de fuerza atómica (AFM) y microscopía electrónica de transmisión (TEM). Paralelamente, se formularon complejos de quitosano y ácido desoxirribonucleico (ADN) a diferentes relaciones nitrógeno: fósforo (N:P), los cuales se caracterizaron por medio de DLS, registrando tamaños de partícula entre 100 y 450 nm, así como cargas superficiales entre -5 y 38 mV dependiendo de variables como el pH y relación N:P. Finalmente, basados en la interacción electrostática entre el complejo quitosano/ADN y fosfolípidos, se obtuvieron complejos modificados superficialmente con una capa fosfolipídica. Las nanopartículas modificadas registraron un tamaño entre 200 y 400 nm, el cual fue medido por medio de DLS y complementado con el resultado obtenido por AFM. La carga superficial de los complejos macromoleculares resultó entre 0 y +30 mV. Los resultados obtenidos por la técnica de electroforesis en gel de agarosa indican una adecuada estabilidad de los complejos a diferentes condiciones de pH y fuerza iónica. Subsecuentemente, se observa que la eficiencia de transfección aumenta conforme se aumenta la relación N:P de los complejos quitosano: ADN. La adición de fosfolípidos a los complejos macromoleculares indica un aumento en la eficiencia de transfección sobre células HeLa llegando a valores cercanos al 20%. Finalmente se puede notar una alta viabilidad celular por parte de todos los complejos formulados.
Abstract. Recent technological and scientific advances seek the development of new vehicles that allow the transport, protection and release of bioactive molecules that are effective and safe for possible therapeutic treatment. In the present research work, a nanosystem based on biopolymer and phospholipids was developed, which has great potential in the transport of nucleic acids. First, mixtures of the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-diestearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (PE 18:0/18: 0-PEG 2000 or PE-PEG2000) at different molar ratios in hydroxyethylpiperazinetanesulfonic acid (HEPES) buffer and were characterized with respect to particle size and zeta potential by dynamic light scattering (DLS) technique. The results obtained show sizes between 125 and 175 nm and a zeta potential between -11 and -15 mV. These results were complemented by atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. In parallel, chitosan and deoxyribonucleic acid (DNA) complexes were formulated at different nitrogen: phosphorus (N:P) ratios, which were characterized by DLS, recording particle sizes between 100 and 450 nm, as well as surface charges between -5 and 38 mV depending on variables such as pH and N:P ratio. Finally, based on the electrostatic interaction between the chitosan/DNA complex and phospholipids, surface modified complexes with a phospholipid layer were obtained. The modified nanoparticles registered a size between 200 and 400 nm, which was measured by DLS and complemented with the result obtained by AFM. The surface charge of the macromolecular complexes was between 0 and +30 mV. The results obtained by the agarose gel electrophoresis technique indicate an adequate stability of the complexes at different pH and ionic strength conditions. Subsequently, it is observed that transfection efficiency increases as the N:P ratio of the chitosan:DNA complexes increases. The addition of phospholipids to the macromolecular complexes indicates an increase in transfection efficiency on HeLa cells reaching values close to 20%. Finally, a high cell viability can be noted for all the formulated complexes.
Abstract. Recent technological and scientific advances seek the development of new vehicles that allow the transport, protection and release of bioactive molecules that are effective and safe for possible therapeutic treatment. In the present research work, a nanosystem based on biopolymer and phospholipids was developed, which has great potential in the transport of nucleic acids. First, mixtures of the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-diestearoyl-sn-glycero-3-phosphoethanolamine, sodium salt (PE 18:0/18: 0-PEG 2000 or PE-PEG2000) at different molar ratios in hydroxyethylpiperazinetanesulfonic acid (HEPES) buffer and were characterized with respect to particle size and zeta potential by dynamic light scattering (DLS) technique. The results obtained show sizes between 125 and 175 nm and a zeta potential between -11 and -15 mV. These results were complemented by atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. In parallel, chitosan and deoxyribonucleic acid (DNA) complexes were formulated at different nitrogen: phosphorus (N:P) ratios, which were characterized by DLS, recording particle sizes between 100 and 450 nm, as well as surface charges between -5 and 38 mV depending on variables such as pH and N:P ratio. Finally, based on the electrostatic interaction between the chitosan/DNA complex and phospholipids, surface modified complexes with a phospholipid layer were obtained. The modified nanoparticles registered a size between 200 and 400 nm, which was measured by DLS and complemented with the result obtained by AFM. The surface charge of the macromolecular complexes was between 0 and +30 mV. The results obtained by the agarose gel electrophoresis technique indicate an adequate stability of the complexes at different pH and ionic strength conditions. Subsequently, it is observed that transfection efficiency increases as the N:P ratio of the chitosan:DNA complexes increases. The addition of phospholipids to the macromolecular complexes indicates an increase in transfection efficiency on HeLa cells reaching values close to 20%. Finally, a high cell viability can be noted for all the formulated complexes.
Descripción
Badilla Núñez, J. (2023). Nanotransportadores de ácidos nucleicos a base de complejos polímero-fosfolípidos. [Tesis de Licenciatura]. Universidad Nacional, Heredia, Costa Rica.
Palabras clave
POLÍMEROS, ÁCIDOS NUCLÉICOS, FOSFOLÍPIDOS, QUITOSANO, CELÚLAS, POLYMERS, NUCLEIC ACIDS, PHOSPHOLIPIDS