Examinando por Autor "Murillo-Castillo, Brayan"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Chitosan-Based Thermo-Responsive Scaffold for Wound Healing Provides Dexketoprofen Trometamol Controlled Release for 24 Hour-Use(Multidisciplinary Digital Publishing Institute (MDPI) (Suiza), 2021) Castillo-Henríquez, Luis; Sanabria-Espinoza, Pablo; Murillo-Castillo, Brayan; Montes de Oca-Vásquez, Gabriela; Batista-Menezes, Diego; Calvo-Guzmán, Briner; Ramírez, Nils; Jose-Roberto, Vega-BaudritAbstract. Chronic and non-healing wounds demand personalized and more effective therapies for treating complications and improve patient adherence. This work aims to develop a suitable chitosan-based scaffold to provide 24 hours controlled release of DKT, by taking advantage of chitosan’s thermo-responsive behavior as well as local hyperthermia in wounds. Three formulation prototypes were developed using chitosan (F1), 2:1 chitosan: PVA (F2), and 1:1 chitosan:gelatin (F3). Compatibility tests were done by DSC, TG, and IR spectroscopy. SEM was employed to examine the morphology of the surface and inner layers from the scaffolds. In vitro release studies were performed at 32 °C and 38 °C to evaluate the release profiles, which were later adjusted to different kinetic models for the best formulation. F3 showed the most controlled release of DKT at 32 °C for 24 hours (77.75 ± 2.72 %), and reduced the burst release in the initial 6 hours (40.18 ± 1.00 %), while at 38 °C the release reached 88.52 ± 2.07 % at 12 hours. The release profile for this formulation fits with Hixson-Crowell and Korsmeyer-Peppas kinetic models at both temperatures. Therefore, the developed chitosan/gelatin thermo-responsive scaffold provides a suitable system for wound healing with a controlled release of DKT for 24 hour-use, which can overcome adherence issues and wound complications.Ítem Quality by Design: A Suitable Methodology in Industrial Pharmacy for Costa Rican Universities(Multidisciplinary Digital Publishing Institute (MDPI) (Suiza), 2022) Castillo, Luis; Murillo-Castillo, Brayan; Chaves-Siles, Lexi; Mora Román, Juan José; Ramírez, Nils; Hernández-Mora, Édgar; Jose-Roberto, Vega-BaudritAbstract. This review aims to present the Quality by Design (QbD) model as a suitable methodology to perform research in the academic Costa Rican institutions that teach Pharmacy. Pubmed, Science Direct, and Google Scholar databases were screened for original research papers and review papers published not more than ten years ago. Institutional repositories from the different universities were reviewed as well. The QbD model stands out as a great methodology for carrying out research projects regarding Pharmaceutical Sciences, but especially for Industrial Pharmacy, where it has contributed in terms of formulation development, manufacturing, and quality control. Academic research based on this model enables the training and development of practical, scientific, and leadership skills in Industrial Pharmacy students. The generated knowledge can be shared in classrooms, which represents an ideal environment to communicate research results and to foster collaborative work between researchers, professors, and students. Moreover, research performed through a QbD approach increases the confidence shown by the industrial sector and health regulatory authorities in the quality of the research, products, and knowledge that are developed and created in an Academy. As a result, the implementation of the model has allowed the creation, transfer, and materialization of knowledge from the Costa Rican Academy to different local pharmaceutical industries.Ítem Topical Chitosan-Based Thermo-Responsive Scaffold Provides Dexketoprofen Trometamol Controlled Release for 24 h Use(Multidisciplinary Digital Publishing Institute (MDPI) (Suiza), 2021) Castillo, Luis; Sanabria-Espinoza, Pablo; Murillo-Castillo, Brayan; Montes de Oca-Vásquez, Gabriela; Batista-Menezes, Diego; Calvo-Guzmán, Briner; Ramírez, Nils; Jose-Roberto, Vega-BaudritChronic and non-healing wounds demand personalized and more effective therapies for treating complications and improving patient compliance. Concerning that, this work aims to develop a suitable chitosan-based thermo-responsive scaffold to provide 24 h controlled release of Dexketoprofen trometamol (DKT). Three formulation prototypes were developed using chitosan (F1), 2:1 chitosan: PVA (F2), and 1:1 chitosan:gelatin (F3). Compatibility tests were done by DSC, TG, and FT-IR. SEM was employed to examine the morphology of the surface and inner layers from the scaffolds. In vitro release studies were performed at 32 °C and 38 °C, and the profiles were later adjusted to different kinetic models for the best formulation. F3 showed the most controlled release of DKT at 32 °C for 24 h (77.75 ± 2.72%) and reduced the burst release in the initial 6 h (40.18 ± 1.00%). The formulation exhibited a lower critical solution temperature (LCST) at 34.96 °C, and due to this phase transition, an increased release was observed at 38 °C (88.52 ± 2.07% at 12 h). The release profile for this formulation fits with Hixson–Crowell and Korsmeyer–Peppas kinetic models at both temperatures. Therefore, the developed scaffold for DKT delivery performs adequate controlled release, thereby; it can potentially overcome adherence issues and complications in wound healing applications.