Logotipo del repositorio
 

Detection and attribution of trends of meteorological extremes in Central America

dc.contributor.authorHidalgo, H. G.
dc.contributor.authorChou-Chen, S. W.
dc.contributor.authorMcKinnon, K. A.
dc.contributor.authorPascale, S.
dc.contributor.authorQuesada-Chacón, D.
dc.contributor.authorAlfaro, E. J.
dc.contributor.authorBautista-Solís, Pável
dc.contributor.authorPérez-Briceño, P. M.
dc.contributor.authorDiaz, H. F.
dc.contributor.authorMaldonado, T.
dc.contributor.authorRivera, E. R.
dc.contributor.authorNakaegawa, T.
dc.date.accessioned2025-05-16T18:03:40Z
dc.date.available2025-05-16T18:03:40Z
dc.date.issued2025-04-30
dc.descriptionEste trabajo se desarrolló en el marco de la implementación del proyecto interuniversitario: La equidad en una transición justa. Promoviendo la participación de la región centroamericana en los informes del IPCC “Red Centroamericana de Ciencia sobre Cambio Climático” (RC4). Referencia: Hidalgo G., H., Chou-Chen, S. W., McKinnon, K. A., Pascale, S., Quesada-Chacón, D., Alfaro, E. J., Bautista-Solís, P., Pérez-Briceño, P. M., Díaz, H. F., Maldonado, T., Rivera, E. R., & Nakaegawa, T. (2025). Detection and attribution of trends of meteorological extremes in Central America. Climatic Change, 178(95), 21. https://doi.org/10.1007/s10584-025-03940-5
dc.description.abstractWe present an analysis to determine whether historical trends in extreme precipitation and temperature indices, as well as in yearly averages of several climate variables, for the Central American region, indicate a sufficient climate signal associated with anthropogenic climate change and, therefore, to assess whether these trends can be explained solely by natural causes.. To achieve this, we use three methodologies: a) a climate model-based approach, b) a hybrid method that combines models and observations (1979–2019), and c) a climate observations-based method (1983–2016). For each methodology, we compare the climate change signal, represented by the historical trends, to the noise generated by simulated climate datasets (using models or statistical methods) that do not include human influence. Overall, the model-based method suggests possible detection of the human influence in most temperature extreme indices and in precipitation-related indices in the northern countries. The hybrid method detects human influence in significantly fewer variables, but in many cases, consistently with those of the model-based approach. Both the hybrid and observation-based methods exhibit similar noise variability to the model-based method. Notably, due to limitations in data availability, our analysis excludes the most recent five years, during which substantial warming and an increase of extreme events have been observed globally.
dc.description.procedenceUniversidad Nacional, Costa Rica
dc.description.procedenceSede Regional Chorotega
dc.description.sponsorshipUniversidad de Costa Rica Universidad Nacional, Centro Mesoamericano de Desarrollo Sostenible del Trópico Seco (Cemede-UNA) Consejo Superior Universitario Centroamericano (CSUCA) International Development Research Centre (IDRC)
dc.identifier.doidoi.org/10.1007/s10584-025-03940-5
dc.identifier.issn1573-1480
dc.identifier.issn0165-0009
dc.identifier.urihttps://hdl.handle.net/11056/31030
dc.language.isoeng
dc.publisherUniversidad de Costa Rica
dc.rightsAcceso abierto
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceProyecto RC4 SIA 0054-23
dc.subjectCAMBIO CLIMÁTICO
dc.subjectCALENTAMIENTO GLOBAL
dc.subjectCLIMATOLOGÍA
dc.subjectPRECIPITACIÓN
dc.subjectAMÉRICA CENTRAL
dc.titleDetection and attribution of trends of meteorological extremes in Central America
dc.title.alternativeDetección y tribución de tendencias de extremos meteorológicos en América Central
dc.typehttp://purl.org/coar/resource_type/c_6501

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Art.-Detection and attribution of trends of meteorological extremes in Central America.pdf
Tamaño:
9.81 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
919 B
Formato:
Item-specific license agreed upon to submission
Descripción: