Modelos de biomasa y carbono para árboles de Gmelina arborea en plantaciones clonales
Fecha
2021-01-01
Autores
Fonseca González, William
Murillo Cruz, Rafael
Ávila Arias, Carlos
Spínola Parallada, Romeo M.
Rojas Vargas, Marilyn
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Nacional, Costa Rica
Resumen
La evaluación de la biomasa y el desarrollo de modelos es un elemento clave para determinar el potencial de mitigación del cambio climático de los ecosistemas forestales. Los bosques plantados año tras año ocupan mayor área, también adquieren mayor relevancia en el almacenamiento de carbono, pero existe poca in-formación sobre la cuantificación de biomasa y carbono para la diversidad de especies, sitios y grado de manejo. El objetivo del estudio fue evaluar la biomasa de los distintos componentes o fracciones (hojas, ramas, fuste, raíz) del árbol. Por medio del método destructivo e indirecto, para construir modelos predic-tivos de biomasa y carbono para los distintos componentes del árbol. Los modelos se desarrollaron por medio del método de mínimos cuadrados ordinarios que utiliza como variable predictora el diámetro normal. Estas ecuaciones explicaron más del 92 % de la variabilidad observada en biomasa y el carbono, con errores de estimados inferiores a 8.5 %, excepto para el carbono en hojas con menor ajuste (R2= 78.2) y mayor error (10.9 %). El fuste representó el 65.6 % de biomasa total del árbol, tiene 37 % de materia seca y 0.48 de fracción de carbono. Como conclusión se obtiene que, el aporte del follaje a la biomasa y carbono total del árbol es mínimo, por lo cual debería justificarse muy bien la asignación de tiempo y recursos para evaluar este componente. Los modelos elegidos son muy prácticos de usar porque requieren solo del diámetro como variable predictora.
Biomass assessment and model development is a key element in determining the climate change mitigation potential of forest ecosystems. Forests planted year after year occupy greater area, they also acquire greater relevance in carbon storage, but there is little information on the quantification of biomass and carbon for the diversity of species, sites and degree of management. The objective of the study was to evaluate the biomass of the different components or fractions (leaves, branches, trunk, root) of the tree. By means of the destructive and indirect method, to build predictive models of biomass and carbon for the different components of the tree. The models were developed using the ordinary least squares method, which uses the normal diameter as a predictor variable. These equations explained more than 92 % of the observed variability in biomass and carbon, with estimation errors of less than 8.5 %, except for carbon in leaves with lower fit (R2= 78.2) and higher error (10.9 %). The stem represented 65.6 % of the total biomass of the tree, has 37 % of dry matter and 0.48 of carbon fraction. As a conclusion, the contribution of the foliage to the total tree biomass and carbon is minimal, so the allocation of time and resources to evaluate this component should be well justified. The models chosen are very practical to use because they require only diameter as a predictor variable.
Biomass assessment and model development is a key element in determining the climate change mitigation potential of forest ecosystems. Forests planted year after year occupy greater area, they also acquire greater relevance in carbon storage, but there is little information on the quantification of biomass and carbon for the diversity of species, sites and degree of management. The objective of the study was to evaluate the biomass of the different components or fractions (leaves, branches, trunk, root) of the tree. By means of the destructive and indirect method, to build predictive models of biomass and carbon for the different components of the tree. The models were developed using the ordinary least squares method, which uses the normal diameter as a predictor variable. These equations explained more than 92 % of the observed variability in biomass and carbon, with estimation errors of less than 8.5 %, except for carbon in leaves with lower fit (R2= 78.2) and higher error (10.9 %). The stem represented 65.6 % of the total biomass of the tree, has 37 % of dry matter and 0.48 of carbon fraction. As a conclusion, the contribution of the foliage to the total tree biomass and carbon is minimal, so the allocation of time and resources to evaluate this component should be well justified. The models chosen are very practical to use because they require only diameter as a predictor variable.
Descripción
INISEFOR
ICOMVIS
ICOMVIS
Palabras clave
ALOMETRÍA, BIOMASA, CAMBIO CLIMÁTICO, GMELINA ARBOREA, MEJORAMIENTO GENÉTICO, REFORESTACIÓN, ALLOMETRY, BIOMASS, CLIMATE CHANGE, GENETIC IMPROVEMENT, REFORESTATION