Predicción de biomasa y carbono en plantaciones clonales de Tectona grandis L.f.
Fecha
2021-01-01
Autores
Fonseca González, William
Ávila Arias, Carlos
Murillo Cruz, Rafael
Rojas Vargas, Marilyn
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Distrital Francisco Jose de Caldas
Resumen
Los modelos matemáticos para predecir biomasa son en la actualidad una opción que facilita y mejora
el cálculo de la capacidad de mitigación del cambio
climático de un ecosistema, pues generan información fundamental para establecer índices nacionales de almacenamiento de carbono. El objetivo de este estudio fue evaluar la biomasa de los distintos componentes del árbol (hojas, ramas, fuste, raíz) por medio de método destructivo e indirecto para construir modelos predictivos de biomasa y carbono, generados por medio del método de mínimos cuadrados ordinarios, cuyo diámetro normal fue la variable regresora. Las ecuaciones seleccionadas explicaron más del 94 % de la variabilidad observada en biomasa o carbono, con errores de estimados inferiores al 5 %. El fuste aportó el 57.4 % a la biomasa total del árbol y las hojas el 5 %. La fracción de carbono fue muy similar entre los componentes leñosos (ramas-fuste-raíz), variando de 44.9 % a 45.7 % y en las hojas alcanzó el 40.7 %.
Mathematical models for biomass and carbon prediction are currently options that facilitate and improves the calculation of the climate change mitigation capacity of an ecosystem, by generating essential information to establish national carbon storage indices. The objective of the study was to evaluate the biomass of the different tree elements (leaves, branches, stem, root) through destructive and indirect methods, to construct predictive biomass and carbon models. The models were developed using the method of ordinary least squares, using the normal diameter as the regressor variable. These equations explained more than 94 % of the variability observed in biomass or carbon, with errors of estimates below 5 %. The stem contributed with 57.4 % to the tree total biomass , and the leaves contributed with 5 %. The carbon fraction was very similar among the woody components (branches -stem-root), which varied from 44.9 % to 45.7 % and in the leaves it reached 40.7 %.
Mathematical models for biomass and carbon prediction are currently options that facilitate and improves the calculation of the climate change mitigation capacity of an ecosystem, by generating essential information to establish national carbon storage indices. The objective of the study was to evaluate the biomass of the different tree elements (leaves, branches, stem, root) through destructive and indirect methods, to construct predictive biomass and carbon models. The models were developed using the method of ordinary least squares, using the normal diameter as the regressor variable. These equations explained more than 94 % of the variability observed in biomass or carbon, with errors of estimates below 5 %. The stem contributed with 57.4 % to the tree total biomass , and the leaves contributed with 5 %. The carbon fraction was very similar among the woody components (branches -stem-root), which varied from 44.9 % to 45.7 % and in the leaves it reached 40.7 %.
Descripción
INISEFOR
Palabras clave
ALOMETRÍA, CAMBIO CLIMÁTICO, COSTA RICA, REFORESTACIÓN, SERVICIOS AMBIENTALES, ALOMETRY, CLIMATE CHANGE, ENVIRONMENTAL SERVICES, REFORESTATION