Departamento de Física
URI permanente para esta comunidadhttp://10.0.96.45:4000/handle/11056/14434
Examinar
Examinando Departamento de Física por browse.metadata.procedence "RONMAC"
Mostrando 1 - 10 de 10
- Resultados por página
- Opciones de ordenación
Ítem Análisis de Registros de Tsunamis anteriores a 1969 observados en la estación de Puntarenas(IV Congreso Nacional de Gestión del Riesgo y Adaptación al Cambio Climático, Heredia, 10 y 11 de octubre 2018, 2018) Chacon-Barrantes, Silvia; Murillo Gutiérrez, Anthony; Rivera Cerdas, Fabio; Vega Vega, JoséLos mareógrafos de Puntarenas, Quepos y Limón fueron instalados en la década de 1940 como una colaboración entre el Instituto Geográfico Nacional (IGN) y la Agencia Nacional Atmosférica y Oceanográfica de los Estados Unidos (NOAA). El IGN enviaba los rollos de papel con los regis- tros mareográficos a la NOAA, quienes los procesaban y los devolvían al IGN para su almacenamiento. Sin embargo, en 1969 estos rollos de papel fueron destruidos en el IGN. Recientemente, gracias a la colaboración del Centro Nacional de Información Ambiental (NCEI) de la NOAA, hemos recuperado varios registros de tsunamis anteriores a ese año, correspon- dientes al mareógrafo de Puntarenas, en forma de imágenes digitales. Los registros incluyen tres tsunamis locales y tres lejanos. Los eventos locales corresponden a dos tsunamis en 1941 en la Península de Osa (Mw 7.3 y Mw 6.9), y uno en 1950 en la Península de Nicoya (Mw 7.8). Los eventos lejanos corresponden a los tsunamis de Kamchatka, Rusia, de 1952 (Mw 9.0), Islas Andreanof, Alaska de 1957 (Mw 8.7) y Chile de 1960 (Mw 9.5). Estos mareogramas de tsunamis no han sido publicados anteriormente, aunque sí constan en bases de datos de tsunamis con las alturas máximas.Ítem Factores que influyen en la forma de la cola de un tsunami(UNICIENCIA Vol. 23 65-69, 2009) Chacon-Barrantes, SilviaThe propagation speed of a tsunami depends on the depth of the ocean in which it propagates. As the tsunami crosses the abyssal plain, it suffers modifications in its form due to change in the depths of the ocean bottom. When the tsunami is reflected on coasts, islands or bathymetric discontinuities, the reflected wave is added to the original form of the tsunami. In this work it is identified how several factors affect the wave-form of a tsunami during its propagation through abyssal plains, by numerical simulations of a tsunami´s propagation from Alaska to Hawai.Ítem Gestionando el riesgo por tsunami desde las comunidades(IV Congreso Nacional de Gestión del Riesgo y Adaptación al Cambio Climático, Heredia 10 y 11 de octubre 2018, 2018) Rivera Cerdas, Fabio; Chacon-Barrantes, SilviaEn caso de que la Comisión Nacional de Prevención de Riesgos y Atención de Emergencias (CNE) declare alerta por tsunami, las personas que se encuentran zonas de riesgo deben evacuar antes de la llegada de la primera ola. Para asegurar que la evacuación se dé en un tiempo adecuado las rutas de evacuación deben estar predeterminadas y señalizadas, y la comunidad debe conocerlas con anticipación, lo que se logra con mapas de evacuación por tsunami. El Programa Red de Observación del Nivel del Mar e Investigación de Amenazas Costeras (RONMAC), se encuentra elaborando mapas de evacuación en caso de tsunamis para 28 comunidades en el Pacífico Central y Pacífico Norte. Para esto se usan modelos numéricos de propagación e inundación por tsunami, SIG y cartografía participativa.Ítem Importancia de la batimetría de las planicies abisales en la propagación de tsunamis transoceánicos(Ciencia y tecnología Vol.25,No.1-2 22-33, 2007) Chacon-Barrantes, SilviaThe initial form of a tsunami originated by an homogeneous seismic source consists on a simple wave front. While the tsunami propagates in deep water, this simple form suffers several modifications by the tsunami’s interaction with the ocean basin’s bathymetry. When the tsunami climbs the continental slope, it suffers more modifications due to the bathymetry and topography of the coastal region. The manner in which these local features modify the tsunami’s form depends on the tsunami’s form itself, i.e., different tsunamis arriving at the same location do not have the same form, though resemblances can be identified among them, and also among the same tsunami arriving to different regions. In this paper the importance that these modifications on the tsunami’s form acquires when it approaches to the coast, is identified for the arrival of the Alaska 1964’s tsunami to Hilo Bay in Hawaii and of the Indonesia 2004 and 2005’s tsunamis to Colombo in Sri Lanka.Ítem Modeling a tsunami from the Nicoya, Costa Rica, seismic gap and its potential impact in Puntarenas(Journal of South American Earth Sciences .Vol.31 No.4 372-382, 2011) Chacon-Barrantes, Silvia; Protti, MarinoAlthough subduction zones around the world are known to be the source of earthquakes and/or tsunamis, not all segments of these plate boundaries generate destructive earthquakes and catastrophic tsunamis. Costa Rica, in Central America, has subduction zones on both the Pacific and the Caribbean coasts and, even though large earthquakes (Mw = 7.4–7.8) occur in these convergent margins, they do not produce destructive tsunamis. The reason for this is that the seismogenic zones of the segments of the subduction zones that produce large earthquakes in Costa Rica are located beneath land (Nicoya peninsula, Osa peninsula and south of Limón) and not off shore as in most subduction zones around the world. To illustrate this particularity of Costa Rican subduction zones, we show in this work the case for the largest rupture area in Costa Rica (under the Nicoya peninsula), capable of producing Mw ∼ 7.8 earthquakes, but the tsunamis it triggers are small and present little potential for damage even to the largest port city in Costa Rica.The Nicoya seismic gap, in NW Costa Rica, has passed its ∼50-year interseismic period and therefore a large earthquake will have to occur there in the near future. The last large earthquake, in 1950 generated a tsunami which slightly affected the southwest coast of the Nicoya Peninsula. We present here a simulation to study the possible consequences that a tsunami generated by the next Nicoya earthquake could have for the city of Puntarenas. Puntarenas has a population of approximately eleven thousand people and is located on a 7.5 km long sand bar with a maximum height of 2 m above the mean sea level. This condition makes Puntarenas vulnerable to tsunamis.Ítem Modeling the Tsunami Potential along the Pacific Coast of Central America(2018) Chacon-Barrantes, SilviaAlong the Pacific of Central America the Cocos plate subducts beneath the Caribbean plate, at the Middle America Trench (MAT). There are no records of mega earthquakes originated there; probably associated to the low coupling in some sections and the presence of seismic barriers. However, moderate ruptures have caused important tsunami runups in the region in 1992 (Ide et al. 1993) and in 2012 (Borrero et al. 2014). Scenarios presented here were defined as worst – case – scenario by 20 experts on seismology, tsunamis and tsunami modeling (Fig. 1.1), based on historical events and / or tectonic and geodetic data. They met in 2016 under the coordination of IOC / UNESCO to discuss the tsunami potential at Central America. Although some scenarios have a low probability of occurrence, they should be taken into account for preparedness purposes.Ítem Numerical Simulation of Several Tectonic Tsunami Sources at the Caribbean Basin(2016) Chacon-Barrantes, Silvia; Lopez-Venegas, Alberto; Macías, Jorge; Zamora, Natalia; Moore, Christopher; Llorente Isidro, MiguelAccording to the NGDC/WDS Global Historical Tsunami Database, the Caribbean Sea has experienced more than 100 historical tsunamis. The most recent tsunami observed in this basin was caused by the 2010 Haity Mw 7.0 earthquake with up to 3.2 runup (Fritz et al. 2013). Still, as tsunamis are not frequent in this basin, tsunami awareness represents a challenge even more because of population increase, tourism, infrastructure and development along the coastal area. The Intergovernmental Coordination Group of the Early Warning System for Tsunamis and Other Coastal threats in the Caribbean Sea and Adjacent Regions (ICG / CARIBE - EWS) seeks to increase tsunami preparedness in the region. Its Hazard Assessment Working Group (WG2) has been assigned the task of identifying potential tsunami sources. During 2016 IOC/UNESCO sponsored three Experts Meetings on Tectonic Tsunami Sources focusing on Honduras, Central America and the Dominican Republic southern coast. The work presented here is part of the results the WG2 has obtained by modeling the credible worst – case scenarios among others, as well as provide future scenarios for CaribeWave exercises.Ítem Simulación rápida de la propagación del tsunami de Chile de 1960 hasta la Bahía de Hilo en Hawaii(Tecnología en marcha Vol.20 No.4 24-29, 2007) Chacon-Barrantes, SilviaEn este trabajo se simula la propagación del tsunami de Chile de 1960, desde su región de generación hasta la bahía de Hilo en Hawái, empleando un método híbrido que permite obtener resultados en un intervalo relativamente pequeño. Los resultados de este método son comparados con resultados de un modelo numérico en aguas profundas, y con mediciones directas del nivel de mar en la bahía de Hilo. Este método fue diseñado con el propósito de evaluar alertas tempranas y no de reproducir exactamente el registro de un tsunami y los resultados obtenidos son aceptables para este propósito.Ítem Tsunami Threat Assessment for the North and Central Pacific Coast of Costa Rica(Seismological Research Letters, 2018) Chacon-Barrantes, Silvia; Arozarena-Llopis, I.A joint international conference of the Seismological Society of America (SSA) and the Latin American and Caribbean Seismological Commission (LACSC) will be held in Miami, Florida on 14 – 17 May 2018. The conference is the first joint meeting of SSA and LACSC, one of four Regional Commissions of the International Association of Seismology and Physics of the Earth´’s Interior (IASPEI)Ítem Tsunamis from Tectonic Sources along Caribbean Plate Boundaries(2015) Lopez-Venegas, Alberto; Chacon-Barrantes, Silvia; Zamora, Natalia; Audermard, Franck; Dondin, Frederic; Clouard, Valerie; Lovholt, Finn; Harbitz, Carl Bonnevie; Vanacore, Elizabeth; Huérfano, VictoThe Caribbean region, home to more than 100 million people, has seen for the last 500 years at Least 75 documented tsunamis (von Hillebrandt-Andrade, 2013). It has been estimated that more than 4500 people have perished as a result (Dunbar et al, 2008; see Figure 2). The Working Group 2 (WG2) of the ICG/CARIBE-EWS in charge of Tsunami Hazard Assessment is a multinational group of experts from and outside the Caribbean region currently focusing on various tsunami aspects. The WG2 has been assigned the task of compiling a list of most credible sources from tectonic origin for the Caribbean nations. For this poster, a subgroup within the WG2 has been formed to evaluate published literature on tsunami sources and develop a comprehensive list based solely on credible sources evaluated through geological and geophysical studies, and seismology. This poster presents the sources and their justification as most-probable tsunami sources based on the context of crustal deformation due to Caribbean plate interacting with neighboring plates and deforming microplates within the plate`s boundaries.