Artículos científicos
URI permanente para esta colecciónhttp://10.0.96.45:4000/handle/11056/17882
Examinar
Examinando Artículos científicos por Autor "Arce-Rodríguez, Alejandro"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Microbial Community Structure Along a Horizontal Oxygen Gradient in a Costa Rican Volcanic Influenced Acid Rock Drainage System(Springer, 2020) Arce-Rodríguez, Alejandro; Puente-Sánchez, Fernando; Avendaño, Roberto; Libby, Eduardo; Mora-Amador, Raúl; Rojas-Jiménez, Keilor; Martínez, María; Pieper, Dietmar H.; Chavarría, MaxWe describe the geochemistry and microbial diversity of a pristine environment that resembles an acid rock drainage (ARD) but it is actually the result of hydrothermal and volcanic influences. We designate this environment, and other comparable sites, as volcanic influenced acid rock drainage (VARD) systems. The metal content and sulfuric acid in this ecosystem stem from the volcanic milieu and not from the product of pyrite oxidation. Based on the analysis of 16S rRNA gene amplicons, we report the microbial community structure in the pristine San Cayetano Costa Rican VARD environment (pH = 2.94–3.06, sulfate ~ 0.87– 1.19 g L−1, iron ~35–61 mg L−1 (waters), and ~ 8–293 g kg−1 (sediments)). San Cayetano was found to be dominated by microorganisms involved in the geochemical cycling of iron, sulfur, and nitrogen; however, the identity and abundance of the species changed with the oxygen content (0.40–6.06 mg L−1) along the river course. The hypoxic source of San Cayetano is dominated by a putative anaerobic sulfate-reducing Deltaproteobacterium. Sulfur-oxidizing bacteria such as Acidithiobacillus or Sulfobacillus are found in smaller proportions with respect to typical ARD. In the oxic downstream, we identified aerobic ironoxidizers (Leptospirillum, Acidithrix, Ferrovum) and heterotrophic bacteria (Burkholderiaceae bacterium, Trichococcus, Acidocella). Thermoplasmatales archaea closely related to environmental phylotypes found in other ARD niches were also observed throughout the entire ecosystem. Overall, our study shows the differences and similarities in the diversity and distribution of the microbial communities between an ARD and a VARD system at the source and along the oxygen gradient that establishes on the course of the river.Ítem Thermoplasmatales and sulfur‑oxidizing bacteria dominate the microbial community at the surface water of a CO2‑rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica(Extremophiles, 2019-01-01) Arce-Rodríguez, Alejandro; Puente-Sánchez, Fernando; Avendaño, Roberto; Martínez-Cruz, María; Maarten de Moor, J; Pieper, Dietmar H; Chavarría, MaxHere we report the chemical and microbial characterization of the surface water of a CO2-rich hydrothermal vent known in Costa Rica as Borbollones, located at Tenorio Volcano National Park. The Borbollones showed a temperature surrounding 60 °C, a pH of 2.4 and the gas released has a composition of ~ 97% CO2, ~ 0.07% H2S, ~ 2.3% N2 and ~ 0.12% CH4. Other chemical species such as sulfate and iron were found at high levels with respect to typical fresh water bodies. Analysis by 16S rRNA gene metabarcoding revealed that in Borbollones predominates an archaeon from the order Thermoplasmatales and one bacterium from the genus Sulfurimonas. Other sulfur- (genera Thiomonas, Acidithiobacillus, Sulfuriferula, and Sulfuricurvum) and iron-oxidizing bacteria (genera Sideroxydans, Gallionella, and Ferrovum) were identified. Our results show that CO2- influenced surface water of Borbollones contains microorganisms that are usually found in acid rock drainage environments or sulfur-rich hydrothermal vents. To our knowledge, this is the first microbiological characterization of a CO2- dominated hydrothermal spring from Central America and expands our understanding of those extreme ecosystems.