Artículos científicos
URI permanente para esta colecciónhttp://10.0.96.45:4000/handle/11056/17882
Examinar
Examinando Artículos científicos por Autor "Abers, Geoffrey A."
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting(American Geophysical Union, 2010-06-24) Abt, David L.; Fischer, Karen M.; Abers, Geoffrey A.; González, Victor; Strauch, Wilfried; Protti, MarinoSKS and SKKS splitting observations are used to constrain the pattern of mantle flow in the Central American subduction zone beneath Costa Rica and Nicaragua. After removing the effects of shallow wedge anisotropy on SK(K)S waveforms, a best fitting model of anisotropy beneath the Cocos Plate and in the deeper mantle wedge is determined. Fast polarization directions and model symmetry axis orientations in both regions (as well as the shallow wedge) are dominated by roughly arc‐parallel azimuths and, therefore, are not consistent with sublithospheric mantle flow entrained by the subducting Cocos Plate or simple two‐dimensional corner flow in the wedge. In conjunction with geochemical data and local S splitting tomography, the SK(K)S splitting observations and anisotropy models are consistent with flow to the WNW within the mantle wedge on the Caribbean side of the Cocos Plate, possibly drawn through a slab window beneath Panama and southern Costa Rica. Anisotropy in the Pacific mantle beneath the Cocos Plate is also best explained by flow with a component that is roughly parallel to the strike of the slab, although the absolute direction of this flow is not uniquely constrainedÍtem Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle(American Geophysical Union, 2008-07-30) Syracuse, Ellen M.; Abers, Geoffrey A.; Fischer, Karen; MacKenzie, Laura; Rychert, Catherine; Protti, Marino; González, Víctor; Strauch, WilfriedThe Central American subduction zone exhibits large variations in geochemistry, downgoing plate roughness and dip, and volcano locations over a short distance along the arc. Results from joint inversions for Vp, Vp/Vs, and hypocenters from the Tomography Under Costa Rica and Nicaragua (TUCAN) experiment give insight into its geometry and structure. In both Costa Rica and Nicaragua, the intermediate-depth seismic zone is a single layer no more than 10 to 20 km thick. Tomographic images show that throughout Nicaragua and Costa Rica the slowest mantle P wave velocities appear below and behind the volcanic front, indicating likely zones of highest temperature extending 80 to 120 km depth. A sheet of high Vp/Vs, thought to be caused by melt, is imaged directly beneath the Nicaraguan volcanoes, whereas a weaker, broader anomaly is imaged beneath the Costa Rican volcanoes, potentially indicating a greater extent of melting beneath Nicaragua. Within the downgoing plate, anomalously low velocities occur at least 20–30 km below Wadati-Benioff zone seismicity, to depths of 140 km beneath Nicaragua and to 60 km depth beneath Costa Rica. They indicate 10–20% serpentinized upper mantle of the downgoing plate beneath Nicaragua, similar to that inferred from refraction seaward of the trench, but continuing to subarc depths. This unusually hydrated lithosphere may introduce more water into the Nicaraguan mantle, initiating increased amount of melting and fluid flux to the arc.Ítem Shear wave anisotropy beneath Nicaragua and Costa Rica: Implications for flow in the mantle wedge(American Geophysical Union, 2009-05-27) Abt, David L.; Fischer, Karen M.; Abers, Geoffrey A.; Strauch, Wilfried; Protti, J. Marino; González, VictorWe present new shear wave splitting data from local events in Costa Rica and Nicaragua recorded by the temporary (July 2004 to March 2006) 48-station TUCAN broadband seismic array. Observed fast polarization directions in the fore arc, arc, and back arc range from arc-parallel to arc-normal over very short distances (<5 km when plotted at raypath midpoints) making the direct interpretation of individual splitting measurements in terms of flow tenuous, even when considering variations in the relationship between lattice-preferred orientation and deformation (e.g., B-type dislocation creep in olivine). Therefore, we tomographically invert the splitting measurements to find a three-dimensional model of crystallographic orientation in the wedge. We assume the elastic constants of olivine and orthopyroxene with hexagonal symmetry and use a damped, iterative least squares approach to account for the nonlinear behavior of splitting when considering three-dimensional ray propagation and distributions of anisotropy. The best fitting model contains roughly horizontal, arc-parallel olivine [100] axes in the mantle wedge down to at least 125 km beneath the back arc and arc, which we interpret to indicate along-arc flow in the mantle wedge. Pb and Nd isotopic ratios in arc lavas provide additional evidence for arc-parallel flow and also constrain the direction (northwest, from Costa Rica to Nicaragua) and minimum flow rate (63–190 mm/a). With only slightly oblique subduction at 85 mm/a of the relatively planar Cocos Plate, the most likely mechanism for driving along-arc transport is toroidal flow around the edge of the slab in southern Costa Rica, generated by greater slab rollback in Nicaragua. Two important implications of this arc-parallel flow are the progressive depletion of the mantle source for arc lavas from Costa Rica to Nicaragua and the possible need for significant decoupling between the wedge and downgoing plate.