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 Summary
Introduction  –  The Cropping Systems Model-Alo-

ha-Pineapple is a computer model that simulates 
pineapple growth and development and predicts fi-
nal yield. The unique physiological characteristics 
of the cultivar ‘MD-2’ were added to the model to be 
more representative of the current and more com-
mon cultivars. The model has the potential to inter-
pret fundamental processes related to crop response 
to environmental conditions in terms of growth and 
productivity. Materials and methods  –  Experimental 
data from ‘MD-2’ plants were used. The plants were 
grown in three environments in Costa Rica differing 
in temperature and solar radiation, using managed 
and standard agribusiness practices. Soil water and 
nutrients were considered non-limiting factors for 
growth and were uniformly controlled. Model evalu-
ation was conducted for the prediction of phenologi-
cal stage of physiological maturity using actual data 
from production fields of a Costa Rican pineapple ex-
port company. Results and discussion  –  The model was 
improved by adding and enhancing the simulation 
of five vegetative and six reproductive phenological 
stages. Model evaluation was satisfactory based on 
the statistical analysis for all experiments that were 
conducted. Conclusion  –  The modeling approach al-
lows to simulate diagnostic agronomic indicators 
that can assess the effect of the environment and 
their interaction with agronomic management on 
growth and development, to predict the productivity 
of pineapple, and to predict the harvest date for both 
naturally flowering fruit and for forcing.
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Significance of this study
What is already known on this subject?
• The pineapple cultivar ‘Smooth Cayenne’ was very 

important for the pineapple agroindustry a few 
decades ago, mainly for canning, and the Aloha 
Pineapple Model was specifically developed for this 
cultivar. Currently, the most common cultivar is ‘MD-
2’, which is mainly used for fresh fruit consumption, 
and has different management requirements and 
production conditions than ‘Smooth Cayenne’.

What are the new findings?
• The physiological characteristics of the ‘MD-2’ 

pineapple cultivar were included in the Aloha 
Pineapple Model to create an updated version with 
new vegetative and reproductive phenological stages 
and many other traits.

What is the expected impact on horticulture?
• Improvements in the Aloha Pineapple Model can 

assist the pineapple agribusiness to analyze new 
production areas and evaluate existing ones to better 
predict growth, development, yield and make safe 
investments.

2023). The agroclimatological characteristics of the main 
pineapple-producing areas of Costa Rica contribute greatly 
to overall productivity, and the cost of land for cultivation has 
significantly increased. As a result, some investors have con-
sidered producing in agroecosystems with higher tempera-
tures and solar radiation and lower elevation due to the low 
cost of land. However, these areas are considered marginal 
and are generally associated with low annual rainfall, thus 
requiring supplemental irrigation.

A feasibility analysis showed that the low cost of these 
marginal lands compensated for the irrigation investment 
costs required to produce ‘MD-2’ and that there is an advan-
tage due to the absence of problems associated with Natural 
Flowering (NF). The latter was reported by Bartholomew 
and Sanewski (2018), who indicate that in warm tropical 
regions, the sensitivity to NF tends to be low because the 
conditions favor rapid growth, and the dry matter content 
remains low. However, this analysis of the return on invest-
ment and profitability was based on data from Costa Rican 
high-production agroecosystems.a  Corresponding author: jvasquez@proagrocr.com.

Introduction
Pineapple production across the world has doubled 

since the beginning of this century, making pineapple the 
third most important tropical fruit in the world (Leal and 
Coppens d’Eeckenbrugge, 2018). Costa Rica is currently the 
largest exporter of pineapple to both the United States and to 
Europe, with ‘MD-2’ as the dominant cultivar (Shahbandeh, 
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Although multiple agronomic practices have been under-
taken to introduce the ‘MD-2’ cultivar in marginal areas, the 
projects have often been terminated for financial reasons. 
This lack of success demonstrates the need to understand 
the fundamental relationships between water, soil, plant, 
and environment on growth, development, and final yield of 
pineapple.

Accurate predictions of crop growth, development, and 
productivity are essential, especially with the increased em-
phasis on climate smart agriculture. During the 1990s, there 
were important advances in predicting the growth, develop-
ment, harvest date, and yield of ‘Smooth Cayenne’ (Zhang 
and Bartholomew, 1993; Zhang et al., 1997). These improve-
ments resulted in the development of the Aloha Pineapple 
model based on the maize model CERES-Maize (Jones and 
Kiniry, 1986). The Aloha-Pineapple Model was also inte-
grated into the Decision Support System for Agrotechnology 
Transfer (DSSAT) (www.DSSAT.net) as a tool to support agri-
cultural management (Hoogenboom et al., 2023; Tsuji, 1998). 
The original Aloha Pineapple Model was developed for the 
‘Smooth Cayenne’ cultivar when this cultivar was predomi-
nantly used for canned fruit production. Since the original 
model was developed, cultivation technology has changed 
significantly. Therefore, the original model cannot effectively 
show agronomic problems and help in decision making for 
investment projects because of its inability to simulate the 
phenotypic plasticity of the pineapple plant associated with 
the environment.

The original model also does not include significant or 
useful agronomic vegetative phenological stages, and the 
reproductive stages are not precisely defined. Physiological 
maturity, which is a critical event for the fresh fruit industry 
because it defines the moment of fruit degreening, was pre-
dicted with criteria for the canning industry, which is very 
different from the physiological maturity criteria of fruit for 
fresh consumption.

The new Aloha Pineapple Model is based on the appli-
cation of fundamental equations of plant growth physiology 
using weather variables as parameters of statistical regres-
sions to predict the growth of phenological stages (V) and 
(R) and indicators of agronomic interest of the pineap-
ple plant and fruit. This approach and the use of pineapple 
growth data from contrasting environmental conditions al-
lows for the simulation of the phenotypic plasticity of the 
pineapple plant. The overall objectives of the new model are 
to allow for comparative monitoring by phenological stage 
of crop growth in the absence of growth limiting factors; to 
simulate and present quantitative, objective, and useful agro-
nomic indicators for the evaluation of growth and agronomic 
management of pineapple; and for the model to be used as 
a tool for predicting the harvest date of both artificially in-
duced and natural fruits.

Materials and methods

Experiments and data collection
‘MD-2’ pineapple growth data were obtained from plants 

grown in three contrasting environments in Costa Rica at 
three elevations of 90, 174, and 1,573 m a.s.l., representing 
different air temperature and solar radiation conditions. 
These sites are called Warm Zone (WZ), Typic Zone (TZ), and 
Cool Zone (CZ). The WZ represents very hot agroecosystems 
usually with productivity problems related to small fruit size 
where NF does not occur. The TZ represents very produc-
tive agroecosystems usually with a significant incidence of 

NF. The CZ is not currently a pineapple agroecosystem, but 
it was included in order to study pineapple response to low 
temperature conditions. At each location, a Davis Vantage-
Pro weather station was installed with the same configura-
tion and sensors.

At all three sites, ‘MD-2’ was cultivated at three different 
planting dates, i.e., January 2021, May 2021, and September 
2021, using culture bags and the same soil as substrate. The 
soil texture was classified as a sandy clay (sand 60%, clay 
37%, and silt 3%), with a pH of 4.45, an organic carbon con-
tent of 2.39%, and nitrogen content of 0.31%. For each plant-
ing date, 10 plants were selected to determine a weekly sam-
pling scheme of the phyllotaxy of each plant and to determine 
when each V-stage was reached. A new V-stage is defined 
when at least 50% of the 10 selected plants have reached that 
particular V-stage. The same criteria were also used to assess 
the R-stages. The description and methodology for determin-
ing the phenological stages is based on the methodology de-
scribed for ‘MD-2’ by Vásquez-Jiménez et al. (2023).

In all cases, sucker seed was planted either on the same 
day that it was harvested from the “mother” plants or the 
next day with a fresh weight that ranged between 600 g and 
650 g. The seed was obtained from the same plot of seed 
production from a high-tech company based in Costa Rica. 
Fertilizer and pesticide applications were based on standard 
agricultural practices of the Costa Rican industry.

When a phenological stage was completed, a sample of 
three plants was obtained, and the leaf area and fresh and 
dry weight of these plants were measured. The dry weight 
was obtained from each complete structure, including leaves 
and stem, by drying the different parts of the plants in a large 
forced hybrid solar dryer at the Instituto Tecnológico de Cos-
ta Rica as described in Guzmán-Hernández et al. (2019). The 
leaf area (indirect methods) was determined  for each group 
of leaves (A, B, C, D, E, and F) according to the Sideris and 
Krauss (1936) leaf classification system. The basal white tis-
sue was separated to consider only the photosynthetic green 
tissue in the estimation of the leaf area. Leaf area of the en-
tire plant was calculated using the ImageJ v. 1.52a software 
and the methodology established by JianChang et al. (2011).

The leaf area and dry weight data of the vegetative phe-
nological stages were obtained when the plants reached the 
following stages: First New Leaf (FNL), Leaf Cycle 1 (LC1), 
Leaf Cycle 2 (LC2), and Leaf Cycle 3 (LC3). Flowering induc-
tion was performed with ethephon when the third leaf cycle 
was reached. In R-stage we measure leaf area and dry weight 
at the time of harvest.

Model improvement
The study was undertaken to update the original Aloha 

Pineapple Model to include the  ‘MD-2’ cultivar. The Source 
Code was obtained from the DSSAT Foundation (www.
DSSAT.net). The first step was to modify the structure of the 
model, specifically the simulation of the phenological stages. 
A comparison between the phenological stages included in 
the original model and the current model is shown in Table 1. 
Phenology simulation is based on the scope of Growing De-
gree Day (GDD), resulting in the Cultivar Genetic Coefficients 
(CGC) for each phenological stage. The methodology used 
to define each CGC associated with each phenological stage 
was trial and error, using the Sensitivity Analysis tool (DSSAT 
v. 4.8). The estimated stage by the model was compared with 
the actual dates of each experiment in which each phenologi-
cal stage was reached by at least 50% of the plant population 
(more details in the phenology section).
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There are four additional stages in the new model; three 
of them correspond to added leaf cycles in the vegetative 
stage, and one was added in the reproductive stage, where 
intervals between flowering stages were redefined to im-
prove the accuracy of identification.

An equation was needed to adjust the differences in 
the initial weight of the vegetative seeds before predicting 
growth that included the increase in leaf area and biomass of 
each vegetative structure of the plant. The differences in the 
initial weight of vegetative seeds are dependent upon factors 
such as the origin of the seed and the methods of collection, 
storage, and selection of planting material. These differences 
are a challenge for a growth prediction model in handling the 
first stage, i.e., the Planting stage.

During the Planting stage, we found that the best equa-
tions to set the initial weight of the seed correspond to pre-
dictive polynomial equations that relate the total dry weight 
of the seed to the dry weight of each vegetative structure, to 
obtain a corrected value of the initial dry weight at the start 
of the model. The above was confirmed by a comparison be-
tween the predictions and actual results using a hypothesis 
test P > 0.05, in accordance with the validation technique de-
veloped by Sargent (2011).

Once the values of the initial variables were set, the equa-
tions were developed through a regression between the 
natural logarithm of the initial dry weight and the natural 
logarithm of the dry weight of each plant structure. Using the 
statistical software Infostat (Di Rienzo et al., 2018), the best 
equation was selected. While these equations are essential 
for the operation of the model, they can only accurately pre-
dict the growth and production of plants that are obtained 
from sucker-type seed fresh weight ranging from 600 to 
650 g (65 to 75 g of dry weight per seed).

The Relative Grow Rate equation was used to predict 
biomass and leaf area for the following phenological stages: 
First New Leaf (FNL), Leaf Cycle 1 (LC1), Leaf Cycle 2 (LC2), 

Leaf Cycle 3 (LC3) and Harvest (HRV), The set of equations 
used in the source code for growth prediction are always the 
same both arithmetically and conceptually for each pheno-
logical stage mentioned above (see the set of equations in 
Equation 4). These equations are obtained from the general 
relative growth rate equation (Equation 1) and a regressor 
equation (Equation 2). The explanation of these equations is 
as follows:
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Where: 
RGR: relative growth rate between the previous stage and the current stage; 
P2: value of the variable in the current stage; 
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The regression between the values of the growth rate calculated with equation 1 for each 
vegetative structure against the regressor variable, Equation 2, allows for the prediction of 
the growth rate of each vegetative structure. 
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Table 1.  Comparison of the original and new phases and stages of the Aloha Pineapple Model in DSSAT 4.8.

Original
stage Original definition Current 

stage Current definition Term
source code

Gdd* 
calibrated value

7 Start simulation to planting 11 Start simulation to planting
8 Planting to root initiation 12 Planting to Root Initiation TC 95
9 Root initiation to first new leaf 

emergence
13 Root Initiation to First New Leaf P1 25

1 First new leaf emergence to 
net zero root growth

1 First New Leaf to leaf cycle 1 P2 1,150

2 Net zero stem growth to forcing 2 Leaf cycle 1 to leaf cycle 2 P3 875
3 Leaf cycle 2 to leaf cycle 3 P4 700
4 Leaf cycle 3 to forcing

3 Forcing to sepals closed on 
youngest flowers (SCY)

5 Forcing to Open Heart P5 815

4 SCY to first open flower 6 Open Heart to Early Anthesis P6 530
7 Early Anthesis to Final Anthesis P7 630

5 Fruit growth 8 Final Anthesis to Physiological 
maturity

P8 2,000

6 Physiological maturity 9 Physiological maturity to Harvest G1 90
10 Harvest

Genetic coefficients of the cultivar not associated with specific phenological stages.
Potential eye number # G2 158
Potential eye growth rate mg eye-1 G3 28
Phyllochron interval between successive leaf tip appearances GDD PHINT 90

* GDD: Growing Degree Days.
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model source code. An antilogarithmic equation was also 
added that allows for the transformation of the result from 
the polynomial regression to a value in growth units (g or m2).

Equation 2 represents a factor obtained from the natural 
logarithm of the ratio between the GDD required by the phe-
nological stage and the ratio of the average maximum tem-
perature (TMAX) and the daily total solar radiation (SRAD). 
The averages for TMAX and SRAD are calculated by the mod-
el based on the time required for each phenological phase 
(GDD). It is assumed that Equation 2 predicts the growth 
rate associated with an agroecosystem that is between the 
agroclimatology conditions of CZ (low temperatures) and 
WZ (high temperatures), which are considered contrasting 
and include the TZ, typical tropical environment for pineap-
ple production.

The First New Leaf is the first stage where Equations 1 
and 2 are used. In addition, Equation 3 was used because it 
had a better correlation for the prediction of Relative Basal 
White Tissue Dry Weight (RBWTDW1).

5 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅 ������
�����𝐿(������

������)
𝑅𝑅𝑅𝑅𝑅 (Eq.𝑅3)𝑅

Where:𝑅
RGR𝑅Modified:𝑅relative𝑅growth𝑅rate𝑅between𝑅the𝑅previous𝑅stage𝑅and𝑅the𝑅current𝑅stage;𝑅
P2:𝑅value𝑅of𝑅the𝑅variable𝑅in𝑅the𝑅current𝑅stage;𝑅
P1:𝑅value𝑅of𝑅the𝑅variable𝑅in𝑅the𝑅previous𝑅stage;𝑅
avGDD:𝑅average𝑅GDD𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅of𝑅the𝑅current𝑅stage;𝑅
avTMAX:𝑅average𝑅maximum𝑅temperature𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅of𝑅the𝑅current𝑅
stage;𝑅
avSRAD:𝑅average𝑅daily𝑅total𝑅solar𝑅radiation𝑅(MJ𝑅m-2𝑅day-1)𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅
of𝑅the𝑅current𝑅stage.𝑅
𝑅

With𝑅the𝑅regression𝑅of𝑅Equations𝑅1𝑅and𝑅2,𝑅the𝑅variables𝑅RLAE1𝑅(Relative𝑅Leaf𝑅Area𝑅Ex-
pansion),𝑅RLDW1𝑅(Relative𝑅Leaf𝑅Dry𝑅Weight),𝑅RSTMWT1𝑅(Relative𝑅Stem𝑅Dry𝑅Weight)𝑅are𝑅pre-
dicted,𝑅and𝑅with𝑅Equations𝑅3𝑅and𝑅2,𝑅RBWTDW1𝑅(Relative𝑅Basal𝑅White𝑅Tissue𝑅Dry𝑅Weight)𝑅
was𝑅predicted.𝑅

Using𝑅Equation𝑅4,𝑅the𝑅predicted𝑅value𝑅of𝑅the𝑅target𝑅variable𝑅was𝑅calculated.𝑅
𝑃𝑃𝑃𝑃𝑃𝑃1 𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃12𝑅 𝑃 𝑅𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃1𝑅 𝑃𝑅(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅
estimate𝑅leaf𝑅area𝑅of𝑅green𝑅tissue;𝑅

𝑅
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1𝑅𝑅𝑅𝑅 𝑅 𝑅𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝑃𝑃𝑅𝑅𝐿𝐿1𝐿1𝐿𝐿𝐿) 𝐿𝑅
(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅estimate𝑅leaf𝑅green𝑅weight;𝑅

𝑅
𝐵𝐵𝑃𝑃𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1𝑅 𝑅 𝑅𝐵𝐵𝑃𝑃𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝐵𝐵𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿1𝐿1𝐿𝐿𝐿)𝑅
𝐿 ( 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅
(𝐿𝐿𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑇𝑇𝐿𝐵𝐵𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇)))𝑅

estimate𝑅basal𝑅white𝑅leaf𝑅weight;𝑅
𝑅

𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿1𝑅𝑅𝑅 𝑅 𝑅𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿1𝐿1𝐿𝐿𝐿) 𝐿𝑅
(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅estimate𝑅stem𝑅weight𝑅𝑅 (Eq.𝑅4)𝑅
DAP3𝑅and𝑅DAP1𝑅define𝑅the𝑅days𝑅after𝑅planting𝑅between𝑅the𝑅Planting𝑅stage𝑅and𝑅the𝑅First𝑅

New𝑅Leaf𝑅stage.𝑅The𝑅days𝑅after𝑅planting𝑅are𝑅used𝑅when𝑅the𝑅relative𝑅growth𝑅variables𝑅are𝑅cal-
culated𝑅with𝑅Equations𝑅1𝑅and𝑅2.𝑅In𝑅the𝑅variable𝑅BASLFWT1,𝑅the𝑅days𝑅after𝑅planting𝑅 is𝑅not𝑅
used,𝑅since𝑅RBWTDW1𝑅was𝑅calculated𝑅with𝑅Equations𝑅2𝑅and𝑅3.𝑅

Due𝑅to𝑅the𝑅non-uniformity𝑅of𝑅the𝑅seed𝑅associated𝑅with𝑅seed𝑅selection𝑅of𝑅the𝑅agroindustry,𝑅
a𝑅new𝑅variable𝑅SEEDQLY𝑅was𝑅added𝑅for𝑅the𝑅prediction𝑅of𝑅the𝑅FNL𝑅stage.𝑅

𝐵𝐵𝑃𝑃𝑃𝑃𝑅𝑅�𝑃𝑃� 𝑅 𝑅1 �𝑅����������
������ � 𝑃 𝑅𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅 (Eq.𝑅5)𝑅

Where:𝑅
SEEDQLY:𝑅potential𝑅factor𝑅or𝑅seed𝑅quality;𝑅
BASLFWT12:𝑅weight𝑅(g𝑅plt-1)𝑅at𝑅sowing𝑅time𝑅of𝑅the𝑅basal𝑅white𝑅leaf𝑅tissue;𝑅
LFWT12:𝑅weight𝑅(g𝑅plt-1)𝑅at𝑅sowing𝑅time𝑅of𝑅the𝑅photosynthetic𝑅green𝑅tissue𝑅of𝑅leaves;𝑅it𝑅does𝑅
not𝑅include𝑅the𝑅weight𝑅of𝑅the𝑅basal𝑅white𝑅leaf𝑅tissue.𝑅
𝑅

The𝑅 variable𝑅 calculated𝑅with𝑅Equation𝑅 5𝑅was𝑅 applied𝑅 to𝑅 the𝑅 LFWT1,𝑅BASLFWT1,𝑅 and𝑅
RSTMWT1𝑅variable𝑅to𝑅improve𝑅the𝑅prediction𝑅of𝑅biomass.𝑅𝑅

Upon𝑅completing𝑅its𝑅GDD,𝑅each𝑅phenological𝑅stage𝑅pushes𝑅to𝑅the𝑅next𝑅one𝑅and𝑅in𝑅turn𝑅
assigns𝑅the𝑅initial𝑅value𝑅for𝑅the𝑅prediction𝑅of𝑅growth𝑅to𝑅each𝑅vegetative𝑅structure.𝑅As𝑅growth𝑅
increases,𝑅the𝑅model𝑅predicts𝑅the𝑅number𝑅of𝑅leaves𝑅using𝑅the𝑅PC𝑅factor𝑅(a𝑅value𝑅between𝑅𝐿𝑅
and𝑅1)𝑅that𝑅adjusts𝑅as𝑅a𝑅fraction𝑅of𝑅the𝑅phyllochron𝑅interval𝑅that𝑅occurs𝑅each𝑅day𝑅based𝑅on𝑅
the𝑅TI𝑅factor𝑅(Figure𝑅1),𝑅a𝑅polynomial𝑅equation𝑅that𝑅predicts𝑅the𝑅fraction𝑅of𝑅the𝑅phyllochron𝑅
emerging𝑅by𝑅day.𝑅

The𝑅phyllochron𝑅fraction𝑅is𝑅calculated𝑅by𝑅dividing𝑅the𝑅number𝑅of𝑅leaves𝑅of𝑅each𝑅leaf𝑅cycle𝑅
(LC)𝑅(13𝑅units)𝑅and𝑅the𝑅number𝑅of𝑅days𝑅it𝑅takes𝑅to𝑅reach𝑅each𝑅respective𝑅LC,𝑅(time𝑅to𝑅P2𝑅for𝑅
LC1,𝑅P3𝑅for𝑅LC2,𝑅and𝑅P4𝑅for𝑅LC3).𝑅If𝑅the𝑅minimum𝑅temperature𝑅is𝑅less𝑅than𝑅the𝑅base𝑅temper-
ature,𝑅the𝑅TI𝑅variable𝑅is𝑅set𝑅to𝑅zero.𝑅At𝑅the𝑅end𝑅of𝑅each𝑅day,𝑅the𝑅number𝑅of𝑅leaves𝑅is𝑅updated𝑅
in𝑅the𝑅CUMPH𝑅variable.𝑅That𝑅is,𝑅the𝑅GDD𝑅of𝑅P2𝑅and𝑅LC1𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅13,𝑅LC2𝑅
and𝑅P3𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅26,𝑅and𝑅LC3𝑅and𝑅P4𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅39.𝑅

 (Eq. 3)

Where:
RGR Modified: relative growth rate between the previous 
stage and the current stage;
P2: value of the variable in the current stage;
P1: value of the variable in the previous stage;
avGDD: average GDD obtained during the growth period of 
the current stage;
avTMAX: average maximum temperature obtained during 
the growth period of the current stage;
avSRAD: average daily total solar radiation (MJ m-2 day-1) ob-
tained during the growth period of the current stage.

With the regression of Equations 1 and 2, the variables 
RLAE1 (Relative Leaf Area Expansion), RLDW1 (Relative 
Leaf Dry Weight), RSTMWT1 (Relative Stem Dry Weight) are 
predicted, and with Equations 3 and 2, RBWTDW1 (Relative 
Basal White Tissue Dry Weight) was predicted.

Using Equation 4, the predicted value of the target vari-
able was calculated.
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅 ������
�����𝐿(������

������)
𝑅𝑅𝑅𝑅𝑅 (Eq.𝑅3)𝑅

Where:𝑅
RGR𝑅Modified:𝑅relative𝑅growth𝑅rate𝑅between𝑅the𝑅previous𝑅stage𝑅and𝑅the𝑅current𝑅stage;𝑅
P2:𝑅value𝑅of𝑅the𝑅variable𝑅in𝑅the𝑅current𝑅stage;𝑅
P1:𝑅value𝑅of𝑅the𝑅variable𝑅in𝑅the𝑅previous𝑅stage;𝑅
avGDD:𝑅average𝑅GDD𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅of𝑅the𝑅current𝑅stage;𝑅
avTMAX:𝑅average𝑅maximum𝑅temperature𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅of𝑅the𝑅current𝑅
stage;𝑅
avSRAD:𝑅average𝑅daily𝑅total𝑅solar𝑅radiation𝑅(MJ𝑅m-2𝑅day-1)𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅
of𝑅the𝑅current𝑅stage.𝑅
𝑅

With𝑅the𝑅regression𝑅of𝑅Equations𝑅1𝑅and𝑅2,𝑅the𝑅variables𝑅RLAE1𝑅(Relative𝑅Leaf𝑅Area𝑅Ex-
pansion),𝑅RLDW1𝑅(Relative𝑅Leaf𝑅Dry𝑅Weight),𝑅RSTMWT1𝑅(Relative𝑅Stem𝑅Dry𝑅Weight)𝑅are𝑅pre-
dicted,𝑅and𝑅with𝑅Equations𝑅3𝑅and𝑅2,𝑅RBWTDW1𝑅(Relative𝑅Basal𝑅White𝑅Tissue𝑅Dry𝑅Weight)𝑅
was𝑅predicted.𝑅

Using𝑅Equation𝑅4,𝑅the𝑅predicted𝑅value𝑅of𝑅the𝑅target𝑅variable𝑅was𝑅calculated.𝑅
𝑃𝑃𝑃𝑃𝑃𝑃1 𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃12𝑅 𝑃 𝑅𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃1𝑅 𝑃𝑅(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅
estimate𝑅leaf𝑅area𝑅of𝑅green𝑅tissue;𝑅

𝑅
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1𝑅𝑅𝑅𝑅 𝑅 𝑅𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝑃𝑃𝑅𝑅𝐿𝐿1𝐿1𝐿𝐿𝐿) 𝐿𝑅
(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅estimate𝑅leaf𝑅green𝑅weight;𝑅

𝑅
𝐵𝐵𝑃𝑃𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1𝑅 𝑅 𝑅𝐵𝐵𝑃𝑃𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝐵𝐵𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿1𝐿1𝐿𝐿𝐿)𝑅
𝐿 ( 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅
(𝐿𝐿𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑇𝑇𝐿𝐵𝐵𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇)))𝑅

estimate𝑅basal𝑅white𝑅leaf𝑅weight;𝑅
𝑅

𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿1𝑅𝑅𝑅 𝑅 𝑅𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿1𝐿1𝐿𝐿𝐿) 𝐿𝑅
(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅estimate𝑅stem𝑅weight𝑅𝑅 (Eq.𝑅4)𝑅
DAP3𝑅and𝑅DAP1𝑅define𝑅the𝑅days𝑅after𝑅planting𝑅between𝑅the𝑅Planting𝑅stage𝑅and𝑅the𝑅First𝑅

New𝑅Leaf𝑅stage.𝑅The𝑅days𝑅after𝑅planting𝑅are𝑅used𝑅when𝑅the𝑅relative𝑅growth𝑅variables𝑅are𝑅cal-
culated𝑅with𝑅Equations𝑅1𝑅and𝑅2.𝑅In𝑅the𝑅variable𝑅BASLFWT1,𝑅the𝑅days𝑅after𝑅planting𝑅 is𝑅not𝑅
used,𝑅since𝑅RBWTDW1𝑅was𝑅calculated𝑅with𝑅Equations𝑅2𝑅and𝑅3.𝑅

Due𝑅to𝑅the𝑅non-uniformity𝑅of𝑅the𝑅seed𝑅associated𝑅with𝑅seed𝑅selection𝑅of𝑅the𝑅agroindustry,𝑅
a𝑅new𝑅variable𝑅SEEDQLY𝑅was𝑅added𝑅for𝑅the𝑅prediction𝑅of𝑅the𝑅FNL𝑅stage.𝑅

𝐵𝐵𝑃𝑃𝑃𝑃𝑅𝑅�𝑃𝑃� 𝑅 𝑅1 �𝑅����������
������ � 𝑃 𝑅𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅 (Eq.𝑅5)𝑅

Where:𝑅
SEEDQLY:𝑅potential𝑅factor𝑅or𝑅seed𝑅quality;𝑅
BASLFWT12:𝑅weight𝑅(g𝑅plt-1)𝑅at𝑅sowing𝑅time𝑅of𝑅the𝑅basal𝑅white𝑅leaf𝑅tissue;𝑅
LFWT12:𝑅weight𝑅(g𝑅plt-1)𝑅at𝑅sowing𝑅time𝑅of𝑅the𝑅photosynthetic𝑅green𝑅tissue𝑅of𝑅leaves;𝑅it𝑅does𝑅
not𝑅include𝑅the𝑅weight𝑅of𝑅the𝑅basal𝑅white𝑅leaf𝑅tissue.𝑅
𝑅

The𝑅 variable𝑅 calculated𝑅with𝑅Equation𝑅 5𝑅was𝑅 applied𝑅 to𝑅 the𝑅 LFWT1,𝑅BASLFWT1,𝑅 and𝑅
RSTMWT1𝑅variable𝑅to𝑅improve𝑅the𝑅prediction𝑅of𝑅biomass.𝑅𝑅

Upon𝑅completing𝑅its𝑅GDD,𝑅each𝑅phenological𝑅stage𝑅pushes𝑅to𝑅the𝑅next𝑅one𝑅and𝑅in𝑅turn𝑅
assigns𝑅the𝑅initial𝑅value𝑅for𝑅the𝑅prediction𝑅of𝑅growth𝑅to𝑅each𝑅vegetative𝑅structure.𝑅As𝑅growth𝑅
increases,𝑅the𝑅model𝑅predicts𝑅the𝑅number𝑅of𝑅leaves𝑅using𝑅the𝑅PC𝑅factor𝑅(a𝑅value𝑅between𝑅𝐿𝑅
and𝑅1)𝑅that𝑅adjusts𝑅as𝑅a𝑅fraction𝑅of𝑅the𝑅phyllochron𝑅interval𝑅that𝑅occurs𝑅each𝑅day𝑅based𝑅on𝑅
the𝑅TI𝑅factor𝑅(Figure𝑅1),𝑅a𝑅polynomial𝑅equation𝑅that𝑅predicts𝑅the𝑅fraction𝑅of𝑅the𝑅phyllochron𝑅
emerging𝑅by𝑅day.𝑅

The𝑅phyllochron𝑅fraction𝑅is𝑅calculated𝑅by𝑅dividing𝑅the𝑅number𝑅of𝑅leaves𝑅of𝑅each𝑅leaf𝑅cycle𝑅
(LC)𝑅(13𝑅units)𝑅and𝑅the𝑅number𝑅of𝑅days𝑅it𝑅takes𝑅to𝑅reach𝑅each𝑅respective𝑅LC,𝑅(time𝑅to𝑅P2𝑅for𝑅
LC1,𝑅P3𝑅for𝑅LC2,𝑅and𝑅P4𝑅for𝑅LC3).𝑅If𝑅the𝑅minimum𝑅temperature𝑅is𝑅less𝑅than𝑅the𝑅base𝑅temper-
ature,𝑅the𝑅TI𝑅variable𝑅is𝑅set𝑅to𝑅zero.𝑅At𝑅the𝑅end𝑅of𝑅each𝑅day,𝑅the𝑅number𝑅of𝑅leaves𝑅is𝑅updated𝑅
in𝑅the𝑅CUMPH𝑅variable.𝑅That𝑅is,𝑅the𝑅GDD𝑅of𝑅P2𝑅and𝑅LC1𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅13,𝑅LC2𝑅
and𝑅P3𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅26,𝑅and𝑅LC3𝑅and𝑅P4𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅39.𝑅

estimate leaf area of green tissue;
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅 ������
�����𝐿(������

������)
𝑅𝑅𝑅𝑅𝑅 (Eq.𝑅3)𝑅

Where:𝑅
RGR𝑅Modified:𝑅relative𝑅growth𝑅rate𝑅between𝑅the𝑅previous𝑅stage𝑅and𝑅the𝑅current𝑅stage;𝑅
P2:𝑅value𝑅of𝑅the𝑅variable𝑅in𝑅the𝑅current𝑅stage;𝑅
P1:𝑅value𝑅of𝑅the𝑅variable𝑅in𝑅the𝑅previous𝑅stage;𝑅
avGDD:𝑅average𝑅GDD𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅of𝑅the𝑅current𝑅stage;𝑅
avTMAX:𝑅average𝑅maximum𝑅temperature𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅of𝑅the𝑅current𝑅
stage;𝑅
avSRAD:𝑅average𝑅daily𝑅total𝑅solar𝑅radiation𝑅(MJ𝑅m-2𝑅day-1)𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅
of𝑅the𝑅current𝑅stage.𝑅
𝑅

With𝑅the𝑅regression𝑅of𝑅Equations𝑅1𝑅and𝑅2,𝑅the𝑅variables𝑅RLAE1𝑅(Relative𝑅Leaf𝑅Area𝑅Ex-
pansion),𝑅RLDW1𝑅(Relative𝑅Leaf𝑅Dry𝑅Weight),𝑅RSTMWT1𝑅(Relative𝑅Stem𝑅Dry𝑅Weight)𝑅are𝑅pre-
dicted,𝑅and𝑅with𝑅Equations𝑅3𝑅and𝑅2,𝑅RBWTDW1𝑅(Relative𝑅Basal𝑅White𝑅Tissue𝑅Dry𝑅Weight)𝑅
was𝑅predicted.𝑅

Using𝑅Equation𝑅4,𝑅the𝑅predicted𝑅value𝑅of𝑅the𝑅target𝑅variable𝑅was𝑅calculated.𝑅
𝑃𝑃𝑃𝑃𝑃𝑃1 𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃12𝑅 𝑃 𝑅𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃1𝑅 𝑃𝑅(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅
estimate𝑅leaf𝑅area𝑅of𝑅green𝑅tissue;𝑅

𝑅
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1𝑅𝑅𝑅𝑅 𝑅 𝑅𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝑃𝑃𝑅𝑅𝐿𝐿1𝐿1𝐿𝐿𝐿) 𝐿𝑅
(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅estimate𝑅leaf𝑅green𝑅weight;𝑅

𝑅
𝐵𝐵𝑃𝑃𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1𝑅 𝑅 𝑅𝐵𝐵𝑃𝑃𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝐵𝐵𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿1𝐿1𝐿𝐿𝐿)𝑅
𝐿 ( 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅
(𝐿𝐿𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑇𝑇𝐿𝐵𝐵𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇)))𝑅

estimate𝑅basal𝑅white𝑅leaf𝑅weight;𝑅
𝑅

𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿1𝑅𝑅𝑅 𝑅 𝑅𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿1𝐿1𝐿𝐿𝐿) 𝐿𝑅
(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅estimate𝑅stem𝑅weight𝑅𝑅 (Eq.𝑅4)𝑅
DAP3𝑅and𝑅DAP1𝑅define𝑅the𝑅days𝑅after𝑅planting𝑅between𝑅the𝑅Planting𝑅stage𝑅and𝑅the𝑅First𝑅

New𝑅Leaf𝑅stage.𝑅The𝑅days𝑅after𝑅planting𝑅are𝑅used𝑅when𝑅the𝑅relative𝑅growth𝑅variables𝑅are𝑅cal-
culated𝑅with𝑅Equations𝑅1𝑅and𝑅2.𝑅In𝑅the𝑅variable𝑅BASLFWT1,𝑅the𝑅days𝑅after𝑅planting𝑅 is𝑅not𝑅
used,𝑅since𝑅RBWTDW1𝑅was𝑅calculated𝑅with𝑅Equations𝑅2𝑅and𝑅3.𝑅

Due𝑅to𝑅the𝑅non-uniformity𝑅of𝑅the𝑅seed𝑅associated𝑅with𝑅seed𝑅selection𝑅of𝑅the𝑅agroindustry,𝑅
a𝑅new𝑅variable𝑅SEEDQLY𝑅was𝑅added𝑅for𝑅the𝑅prediction𝑅of𝑅the𝑅FNL𝑅stage.𝑅

𝐵𝐵𝑃𝑃𝑃𝑃𝑅𝑅�𝑃𝑃� 𝑅 𝑅1 �𝑅����������
������ � 𝑃 𝑅𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅 (Eq.𝑅5)𝑅

Where:𝑅
SEEDQLY:𝑅potential𝑅factor𝑅or𝑅seed𝑅quality;𝑅
BASLFWT12:𝑅weight𝑅(g𝑅plt-1)𝑅at𝑅sowing𝑅time𝑅of𝑅the𝑅basal𝑅white𝑅leaf𝑅tissue;𝑅
LFWT12:𝑅weight𝑅(g𝑅plt-1)𝑅at𝑅sowing𝑅time𝑅of𝑅the𝑅photosynthetic𝑅green𝑅tissue𝑅of𝑅leaves;𝑅it𝑅does𝑅
not𝑅include𝑅the𝑅weight𝑅of𝑅the𝑅basal𝑅white𝑅leaf𝑅tissue.𝑅
𝑅

The𝑅 variable𝑅 calculated𝑅with𝑅Equation𝑅 5𝑅was𝑅 applied𝑅 to𝑅 the𝑅 LFWT1,𝑅BASLFWT1,𝑅 and𝑅
RSTMWT1𝑅variable𝑅to𝑅improve𝑅the𝑅prediction𝑅of𝑅biomass.𝑅𝑅

Upon𝑅completing𝑅its𝑅GDD,𝑅each𝑅phenological𝑅stage𝑅pushes𝑅to𝑅the𝑅next𝑅one𝑅and𝑅in𝑅turn𝑅
assigns𝑅the𝑅initial𝑅value𝑅for𝑅the𝑅prediction𝑅of𝑅growth𝑅to𝑅each𝑅vegetative𝑅structure.𝑅As𝑅growth𝑅
increases,𝑅the𝑅model𝑅predicts𝑅the𝑅number𝑅of𝑅leaves𝑅using𝑅the𝑅PC𝑅factor𝑅(a𝑅value𝑅between𝑅𝐿𝑅
and𝑅1)𝑅that𝑅adjusts𝑅as𝑅a𝑅fraction𝑅of𝑅the𝑅phyllochron𝑅interval𝑅that𝑅occurs𝑅each𝑅day𝑅based𝑅on𝑅
the𝑅TI𝑅factor𝑅(Figure𝑅1),𝑅a𝑅polynomial𝑅equation𝑅that𝑅predicts𝑅the𝑅fraction𝑅of𝑅the𝑅phyllochron𝑅
emerging𝑅by𝑅day.𝑅

The𝑅phyllochron𝑅fraction𝑅is𝑅calculated𝑅by𝑅dividing𝑅the𝑅number𝑅of𝑅leaves𝑅of𝑅each𝑅leaf𝑅cycle𝑅
(LC)𝑅(13𝑅units)𝑅and𝑅the𝑅number𝑅of𝑅days𝑅it𝑅takes𝑅to𝑅reach𝑅each𝑅respective𝑅LC,𝑅(time𝑅to𝑅P2𝑅for𝑅
LC1,𝑅P3𝑅for𝑅LC2,𝑅and𝑅P4𝑅for𝑅LC3).𝑅If𝑅the𝑅minimum𝑅temperature𝑅is𝑅less𝑅than𝑅the𝑅base𝑅temper-
ature,𝑅the𝑅TI𝑅variable𝑅is𝑅set𝑅to𝑅zero.𝑅At𝑅the𝑅end𝑅of𝑅each𝑅day,𝑅the𝑅number𝑅of𝑅leaves𝑅is𝑅updated𝑅
in𝑅the𝑅CUMPH𝑅variable.𝑅That𝑅is,𝑅the𝑅GDD𝑅of𝑅P2𝑅and𝑅LC1𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅13,𝑅LC2𝑅
and𝑅P3𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅26,𝑅and𝑅LC3𝑅and𝑅P4𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅39.𝑅

DAP3 and DAP1 define the days after planting between 
the Planting stage and the First New Leaf stage. The days af-
ter planting are used when the relative growth variables are 
calculated with Equations 1 and 2. In the variable BASLFWT1, 
the days after planting is not used, since RBWTDW1 was cal-
culated with Equations 2 and 3.

Due to the non-uniformity of the seed associated with 
seed selection of the agroindustry, a new variable SEEDQLY 
was added for the prediction of the FNL stage.
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅 ������
�����𝐿(������

������)
𝑅𝑅𝑅𝑅𝑅 (Eq.𝑅3)𝑅

Where:𝑅
RGR𝑅Modified:𝑅relative𝑅growth𝑅rate𝑅between𝑅the𝑅previous𝑅stage𝑅and𝑅the𝑅current𝑅stage;𝑅
P2:𝑅value𝑅of𝑅the𝑅variable𝑅in𝑅the𝑅current𝑅stage;𝑅
P1:𝑅value𝑅of𝑅the𝑅variable𝑅in𝑅the𝑅previous𝑅stage;𝑅
avGDD:𝑅average𝑅GDD𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅of𝑅the𝑅current𝑅stage;𝑅
avTMAX:𝑅average𝑅maximum𝑅temperature𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅of𝑅the𝑅current𝑅
stage;𝑅
avSRAD:𝑅average𝑅daily𝑅total𝑅solar𝑅radiation𝑅(MJ𝑅m-2𝑅day-1)𝑅obtained𝑅during𝑅the𝑅growth𝑅period𝑅
of𝑅the𝑅current𝑅stage.𝑅
𝑅

With𝑅the𝑅regression𝑅of𝑅Equations𝑅1𝑅and𝑅2,𝑅the𝑅variables𝑅RLAE1𝑅(Relative𝑅Leaf𝑅Area𝑅Ex-
pansion),𝑅RLDW1𝑅(Relative𝑅Leaf𝑅Dry𝑅Weight),𝑅RSTMWT1𝑅(Relative𝑅Stem𝑅Dry𝑅Weight)𝑅are𝑅pre-
dicted,𝑅and𝑅with𝑅Equations𝑅3𝑅and𝑅2,𝑅RBWTDW1𝑅(Relative𝑅Basal𝑅White𝑅Tissue𝑅Dry𝑅Weight)𝑅
was𝑅predicted.𝑅

Using𝑅Equation𝑅4,𝑅the𝑅predicted𝑅value𝑅of𝑅the𝑅target𝑅variable𝑅was𝑅calculated.𝑅
𝑃𝑃𝑃𝑃𝑃𝑃1 𝑅 𝑅𝑃𝑃𝑃𝑃𝑃𝑃12𝑅 𝑃 𝑅𝑃𝑃𝑃𝑃𝑃𝑃(𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃1𝑅 𝑃𝑅(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅
estimate𝑅leaf𝑅area𝑅of𝑅green𝑅tissue;𝑅

𝑅
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1𝑅𝑅𝑅𝑅 𝑅 𝑅𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝑃𝑃𝑅𝑅𝐿𝐿1𝐿1𝐿𝐿𝐿) 𝐿𝑅
(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅estimate𝑅leaf𝑅green𝑅weight;𝑅

𝑅
𝐵𝐵𝑃𝑃𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1𝑅 𝑅 𝑅𝐵𝐵𝑃𝑃𝐵𝐵𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝐵𝐵𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿1𝐿1𝐿𝐿𝐿)𝑅
𝐿 ( 𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝑅𝑅
(𝐿𝐿𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑇𝑇𝐿𝐵𝐵𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇)))𝑅

estimate𝑅basal𝑅white𝑅leaf𝑅weight;𝑅
𝑅

𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿1𝑅𝑅𝑅 𝑅 𝑅𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿12 𝐿 𝑃𝑃𝑃𝑃𝑃𝑃((𝑅𝑅𝐵𝐵𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿1𝐿1𝐿𝐿𝐿) 𝐿𝑅
(𝑅𝑅𝑃𝑃𝑃𝑃3 𝑅 𝑅𝑅𝑃𝑃𝑃𝑃1))𝑅estimate𝑅stem𝑅weight𝑅𝑅 (Eq.𝑅4)𝑅
DAP3𝑅and𝑅DAP1𝑅define𝑅the𝑅days𝑅after𝑅planting𝑅between𝑅the𝑅Planting𝑅stage𝑅and𝑅the𝑅First𝑅

New𝑅Leaf𝑅stage.𝑅The𝑅days𝑅after𝑅planting𝑅are𝑅used𝑅when𝑅the𝑅relative𝑅growth𝑅variables𝑅are𝑅cal-
culated𝑅with𝑅Equations𝑅1𝑅and𝑅2.𝑅In𝑅the𝑅variable𝑅BASLFWT1,𝑅the𝑅days𝑅after𝑅planting𝑅 is𝑅not𝑅
used,𝑅since𝑅RBWTDW1𝑅was𝑅calculated𝑅with𝑅Equations𝑅2𝑅and𝑅3.𝑅

Due𝑅to𝑅the𝑅non-uniformity𝑅of𝑅the𝑅seed𝑅associated𝑅with𝑅seed𝑅selection𝑅of𝑅the𝑅agroindustry,𝑅
a𝑅new𝑅variable𝑅SEEDQLY𝑅was𝑅added𝑅for𝑅the𝑅prediction𝑅of𝑅the𝑅FNL𝑅stage.𝑅

𝐵𝐵𝑃𝑃𝑃𝑃𝑅𝑅�𝑃𝑃� 𝑅 𝑅1 �𝑅����������
������ � 𝑃 𝑅𝑃𝑃𝑃𝑃𝐿𝐿𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅 (Eq.𝑅5)𝑅

Where:𝑅
SEEDQLY:𝑅potential𝑅factor𝑅or𝑅seed𝑅quality;𝑅
BASLFWT12:𝑅weight𝑅(g𝑅plt-1)𝑅at𝑅sowing𝑅time𝑅of𝑅the𝑅basal𝑅white𝑅leaf𝑅tissue;𝑅
LFWT12:𝑅weight𝑅(g𝑅plt-1)𝑅at𝑅sowing𝑅time𝑅of𝑅the𝑅photosynthetic𝑅green𝑅tissue𝑅of𝑅leaves;𝑅it𝑅does𝑅
not𝑅include𝑅the𝑅weight𝑅of𝑅the𝑅basal𝑅white𝑅leaf𝑅tissue.𝑅
𝑅

The𝑅 variable𝑅 calculated𝑅with𝑅Equation𝑅 5𝑅was𝑅 applied𝑅 to𝑅 the𝑅 LFWT1,𝑅BASLFWT1,𝑅 and𝑅
RSTMWT1𝑅variable𝑅to𝑅improve𝑅the𝑅prediction𝑅of𝑅biomass.𝑅𝑅

Upon𝑅completing𝑅its𝑅GDD,𝑅each𝑅phenological𝑅stage𝑅pushes𝑅to𝑅the𝑅next𝑅one𝑅and𝑅in𝑅turn𝑅
assigns𝑅the𝑅initial𝑅value𝑅for𝑅the𝑅prediction𝑅of𝑅growth𝑅to𝑅each𝑅vegetative𝑅structure.𝑅As𝑅growth𝑅
increases,𝑅the𝑅model𝑅predicts𝑅the𝑅number𝑅of𝑅leaves𝑅using𝑅the𝑅PC𝑅factor𝑅(a𝑅value𝑅between𝑅𝐿𝑅
and𝑅1)𝑅that𝑅adjusts𝑅as𝑅a𝑅fraction𝑅of𝑅the𝑅phyllochron𝑅interval𝑅that𝑅occurs𝑅each𝑅day𝑅based𝑅on𝑅
the𝑅TI𝑅factor𝑅(Figure𝑅1),𝑅a𝑅polynomial𝑅equation𝑅that𝑅predicts𝑅the𝑅fraction𝑅of𝑅the𝑅phyllochron𝑅
emerging𝑅by𝑅day.𝑅

The𝑅phyllochron𝑅fraction𝑅is𝑅calculated𝑅by𝑅dividing𝑅the𝑅number𝑅of𝑅leaves𝑅of𝑅each𝑅leaf𝑅cycle𝑅
(LC)𝑅(13𝑅units)𝑅and𝑅the𝑅number𝑅of𝑅days𝑅it𝑅takes𝑅to𝑅reach𝑅each𝑅respective𝑅LC,𝑅(time𝑅to𝑅P2𝑅for𝑅
LC1,𝑅P3𝑅for𝑅LC2,𝑅and𝑅P4𝑅for𝑅LC3).𝑅If𝑅the𝑅minimum𝑅temperature𝑅is𝑅less𝑅than𝑅the𝑅base𝑅temper-
ature,𝑅the𝑅TI𝑅variable𝑅is𝑅set𝑅to𝑅zero.𝑅At𝑅the𝑅end𝑅of𝑅each𝑅day,𝑅the𝑅number𝑅of𝑅leaves𝑅is𝑅updated𝑅
in𝑅the𝑅CUMPH𝑅variable.𝑅That𝑅is,𝑅the𝑅GDD𝑅of𝑅P2𝑅and𝑅LC1𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅13,𝑅LC2𝑅
and𝑅P3𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅26,𝑅and𝑅LC3𝑅and𝑅P4𝑅are𝑅reached𝑅when𝑅CUMPH=𝑅39.𝑅

 (Eq. 5)

Where:
SEEDQLY: potential factor or seed quality;
BASLFWT12: weight (g plt-1) at sowing time of the basal 
white leaf tissue;
LFWT12: weight (g plt-1) at sowing time of the photosynthe-
tic green tissue of leaves; it does not include the weight of the 
basal white leaf tissue.

The variable calculated with Equation 5 was applied to 
the LFWT1, BASLFWT1, and RSTMWT1 variable to improve 
the prediction of biomass. 

Upon completing its GDD, each phenological stage push-
es to the next one and in turn assigns the initial value for the 
prediction of growth to each vegetative structure. As growth 
increases, the model predicts the number of leaves using the 
PC factor (a value between 0 and 1) that adjusts as a fraction 
of the phyllochron interval that occurs each day based on the 
TI factor (Figure 1), a polynomial equation that predicts the 
fraction of the phyllochron emerging by day.

The phyllochron fraction is calculated by dividing the 
number of leaves of each leaf cycle (LC) (13 units) and the 
number of days it takes to reach each respective LC, (time to 
P2 for LC1, P3 for LC2, and P4 for LC3). If the minimum tem-
perature is less than the base temperature, the TI variable is 
set to zero. At the end of each day, the number of leaves is up-
dated in the CUMPH variable. That is, the GDD of P2 and LC1 
are reached when CUMPH = 13, LC2 and P3 are reached when 
CUMPH = 26, and LC3 and P4 are reached when CUMPH = 39.

The TI equation (shown in Figure 1) is the same for all 
leaf cycles, while the differences in the TI prediction are con-
trolled by the PC variable, which is affected by a specific mul-
tiplier over the phyllochron interval (PHINT) based on the LC 
that is being predicted. We found that the specific multiplier 
for the PC variable is 1 for the prediction of LC1 (13 leaves), 
0.9 for the prediction of LC2 (26 leaves) and 0.85 for the pre-
diction of LC3 (39 leaves). This decrease of the multiplier is 
due to the fact that by increasing the number of leaves, the 
leaf area increases and the leaf production capacity increas-
es, so the time to reach leaf cycle is reduced, which must be 
adjusted by reducing of the multiplier on the variable PC. 
Note how the reduction of the multiplier is 0.1 from LC1 to 
LC2, while from LC2 to LC3 it is 0.05, this smaller reduction 
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FIGURE 1.  Leaf cycle fraction (TI) emerging by day. Data from experimental plots cultivated with the ‘MD-2’ pine-
apple cultivar in three contrasting environments of Costa Rica. 
 
 
 
  

Figure 1.  Leaf cycle fraction (TI) emerging by day. Data from 
experimental plots cultivated with the ‘MD-2’ pineapple cul-
tivar in three contrasting environments of Costa Rica.
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from LC2 to LC3 is due to the fact that at this stage the plant 
also allocates storage photosynthate to the stem, which does 
not occur in the previous stages except if the plant is predis-
posed to natural flowering.

In terms of biomass, the Open Heart, Early Anthesis, Fi-
nal Anthesis and Phenological Maturity phenological stages 
are not useful for agroindustry, so biomass was not estimat-

ed for these phenological stages. Therefore, leaf area, leaf, 
stem, and root weight follow a smooth trajectory from LC3 to 
harvest. The peduncle and other vegetative structures were 
based on the original model (Zhang et al., 1997; Zhang and 
Bartholomew, 1993) but do not consider the agronomic indi-
cators that are proposed in the new model.

Table 2.  Statistics generated with the DSSAT GBuild 4.8 tool for: 1) Phenology: in which the precision of the calibration ob-
tained in terms of days after planting (DAP) is compared (Observed: Obs vs. Simulated: Sim), both in vegetative and reproduc-
tive stages; 2) Growth: in which the precision of the calibration obtained in biomass is compared in each of the phenological 
stages; and 3) Specific agronomic indicators in their respective yield units are compared at the time of harvest, except Bio-Fo, 
which has its agronomic relevance at the time of forcing.

Variable 
name

Mean 
(Obs.)

Mean 
(Sim.)

Mean 
(Ratio)

Std. Dev. 
(Obs.)

Std. Dev. 
(Sim.) R2 Mean 

Diff.
Mean 
Abs. Diff. RMSE1 d-Stat2 Used 

Obs.
Phenology (Days after planting)

Vegetative stages
RI 12.0 12.6 1.05 6.43 7.59 0.94 1 1 2.19 0.98 9
FNL 15.6 16.4 0.95 10.01 9.57 0.95 1 2 2.36 0.98 9
LC1 173 169 0.98 100.5 98.95 0.99 -4 6 7.54 0.99 9
LC2 171 169 0.99 10.41 8.67 0.78 -2 4 5.16 0.93 6
LC3 235 222 0.94 20.0 11.5 0.79 -14 14 17.7 0.77 4
Reproductive stages
OH 43.4 41.1 0.95 8.68 9.42 0.92 -2 2 3.58 0.96 9
EA 60.9 62.0 1.02 12.8 14.5 0.95 1 3 3.73 0.98 8
FA 87.3 88.4 1.01 21.3 21.6 0.99 1 2 2.26 0.99 8
PhM 437 436 1.00 112.4 110.3 0.99 -1 3 3.79 1.00 8
HRV 440 440 1.00 110.8 111.3 0.99 0 3 3.55 1.00 8

Growth (Biomass)
Vegetative stages
FNL 1,030 1,035 1.01 74.4 96.7 0.00 5.5 106.2 124.7 0.36 9
LC1 2,166 2,065 0.96 236.8 213.3 0.30 -100.9 170 236.9 0.74 9
LC2 4,058 3,575 0.81 893.4 1491 0.97 -483.5 483.5 798.7 0.89 7
LC3 7,429 7,107 0.97 1,018 479 0.96 -321.6 594.5 641.8 0.83 6
Reproductive stages
HRV 5.81 5.38 0.94 2.48 2.19 0.81 -0.43 0.97 1.16 0.94 8

Growth (Leaf count)
LC1 13.0 12.7 0.97 0.50 1.97 0.34 -0.3 1.1 1.75 0.46 9
LC2 26.1 25.8 0.99 0.57 1.45 0.03 -0.3 1.4 1.48 0.31 6
LC3 39.0 38.8 0.99 0.68 1.75 0.00 -0.2 1.6 1.84 0.32 6

Growth (Leaf Area Index)
FNL 0.40 0.40 1.00 0.05 0.04 0.60 0 0.03 0.03 0.87 9
LC1 0.71 0.66 0.96 0.22 0.19 0.85 -0.05 0.08 0.09 0.94 9
LC2 1.38 1.22 0.80 0.47 0.52 0.82 -0.16 0.21 0.27 0.93 7
LC3 2.21 2.19 1.00 0.31 0.22 0.30 -0.02 0.23 0.26 0.70 6
HRV 1.76 1.83 1.14 0.84 0.79 0.88 0.08 0.25 0.30 0.97 8

Specific agronomic indicators
HI 0.77 0.81 1.05 0.12 0.11 0.70 0.04 0.06 0.08 0.89 8
Fr-p-Fr 131.4 145.7 1.15 28.5 21.5 0.61 14.3 16.2 22.8 0.80 8
Eye-w 2.28 2.57 1.13 0.76 0.84 0.88 0.28 0.29 0.41 0.93 8
Bio-Fo 5.40 5.10 0.95 2.30 2.10 0.95 -0.40 0.60 0.66 0.98 8

Definition of abbreviations: Root Initiation: RI; First New Leaf: FNL; Leaf Cycle 1: LC1; Leaf Cycle 2: LC2; Leaf Cycle 3: LC3; Open Heart: OH; Early 
Anthesis: EA; Final Anthesis: FA; Physiological Maturity: PhM; Harvest: HRV; Harvest Index: HI; Fruitlets per Fruit: Fr-p-Fr in units; Eye weight: 
Eye-w; Above ground biomass at forcing: Bio-Fo in tons ha-1.
Observed: Obs.; Simulated: Sim.; Standard deviation: Std. Dev.; Difference: Diff.; Absolute difference: Abs. Diff.
1 RMSE: Root Mean Square Error.
2 d-Stat: The index of agreement (d) proposed by Willmott et al. (1985) according to the d-statistic, the closer the index value is to one, the better the 
agreement between the two variables that are being compared.



6 I n t e r n a t i o n a l  J o u r n a l  o f  T r o p i c a l  a n d  S u b t r o p i c a l  H o r t i c u l t u r e

Vásquez-Jiménez et al.  |  Improved Aloha Pineapple Model

Model calibration
In the DSSAT Cropping System Model (Hoogenboom et 

al., 2019; Jones et al., 2003), the specific traits of a cultivar 
and plant response to local weather conditions are known as 
Cultivar Genetic Coefficients (CGC). Realistic trait physiology 
is currently to be considered for some crop models to link ge-
netics more closely with crop modeling (Boote et al., 2021). 
However, in the Aloha Pineapple Model, most of the devel-
opment CGCs are based on a simpler approach, i.e., Growing 
Degree Days (GDD).

The calibration of the model has two steps. The first is 
the calibration of the GDD necessary to reach a particular 
phenological stage based on the actual observation dates for 
each zone and planting date, resulting in a GDD for each CGC 
as defined in Table 1. The second step is biomass calibration, 
which is based on leaf green weight (LFWT), basal white leaf 
weight (BASLFWT), and stem weight (STMWT). The leaf area 
of green tissue (PLA) was calibrated based on the leaf area 
index (LAI).

The optimization process confirmed that a base tempera-
ture of 13 °C for all the V stages resulted in the highest pre-
diction precision, while for the R stages the highest predic-
tion precision was obtained with a base temperature of 2 °C.
1. Phenology.  The calibration of the GDD defined in Table 1 
was first conducted for each treatment representing all 
combinations of zone and planting date. Each phenological 
stage, one at a time, was subject to a trial-and-error evalua-
tion using sensitivity analysis until the exact GDD was found 
for each phenological stage and for each Zone/Planting-Date 
combination with testing done using base temperatures of 
0 °C to 16 °C. Subsequently, an average of the GDD for the 
respective phenological stage was obtained, and the result 
was evaluated graphically. The modified Aloha model was 
calibrated for the export agroindustry, which generally uses 
ethephon to degreening the fruit.
2. Growth.  The model was calibrated for growth based on 
a regression generated between the Relative Growth Rate 
equation (Equation 1, described in the previous section) and 
a regressor equation (Equation 2, also described in the pre-
vious section). Equation 1 defines the total amount of growth 
units to be assigned to each vegetative structure according to 
the duration of the phenological stage, while the regressor 
equation (Equation 2) uses thermal time, maximum tempe-
rature, and maximum solar radiation to define the fraction of 

growth unit to be allocated per day. The use of these environ-
mental variables in the regressor equation allows the model 
to identify different agroecosystems. Growth precision in the 
model depends largely on a good phenology calibration, as 
this calibration influences the estimation of GDDs that are 
the basis of the growth equations.

Model evaluation
Model evaluation requires independent data. However, 

the agroindustry only has data for planting dates, forcing 
dates, physiological maturity, and harvest dates. Therefore, 
the model was evaluated with a hypothesis test in Infostat of 
dates predicted by the model vs. actual dates for the sowing/
physiological maturity interval.

Model application
In general terms, there are two agronomic problems or 

opportunities for improvement in agroindustry regarding 
the interpretation of production and productivity. The first 
one is to determine a priori the productive potential of new 
agroecosystems for pineapple production, i.e., solid technical 
information for pre-feasibility studies, and objectively to de-
termine the productive potential of agroecosystems already 
established with pineapple cultivation, i.e., solid technical 
information to define strategies for the day-to-day manage-
ment and the continuous improvement.

On the other hand, the pineapple agribusiness needs the 
ability to predict the harvest date of forced and naturally 
flowering plant. Software that could speed up and improve 
the precision of these estimates would be of great help.

Some of these production challenges can be addressed 
by defining diagnostic agronomic indicators. To assist in this 
process, scientific evidence of typical characteristics of plants 
associated with the agroecosystem like those mentioned by 
Bartholomew (2018) should be used, along with empirical 
evidence of undesirable characteristics of fruits, i.e., export 
market criteria, associated with certain agroecosystems 
(Bartholomew and Sanewski, 2018). The data from the typi-
cal Costa Rican production condition (TZ site) were used in 
this study as a reference for ideal or desirable values of the 
diagnostic indicators, both for the biomass of the plants and 
for the number and weight of the fruitlets at the fruit level. 
For values that indicate a negative impact on production, the 
data from the WZ site were used as references, especially 

Table 3.  Air temperature and solar irradiance for the different zones and planting date during this study of pineapple plant 
and fruit development.

Zone Planting
Temperature †

Irradiance‡
(mj m2 day-1)Minimum Maximum Average

---------------------------------------------- °C ----------------------------------------
CZ Jan. 14.6 (9.3 – 17.0)e 20.7 (16.8 – 24.2)d 17.5 (14.6 – 20.3) 12.3c

May 14.7 (9.3 – 17.0)e 20.8 (16.8 – 24.2)d 17.6 (14.6 – 20.3) 11.6c
Sep. 14.6 (9.3 – 17.0)e 20.7 (16.8 – 23.9)d 17.5 (14.6 – 20.3) 11.8c

WZ Jan. 21.2 (15.4 – 25.9)cd 33.3 (27.8 – 37.9)a 27.0 (24.2 – 29.9) 20.0a
May 21.2 (14.2 – 24.7)d 33.4 (27.8 – 38.1)a 27.0 (23.5 – 30.1) 20.0a
Sep. 21.4 (14.2 – 24.5)d 32.8 (26.6 – 38.1)b 26.8 (23.5 – 30.1) 19.3a

TZ Jan. 21.7 (15.1 – 24.3)a 30.0 (22.4 – 33.2)c 25.7 (20.7 – 28.0) 13.9b
May 21.6 (16.2 – 24.3)ab 30.2 (22.5 – 34.4)c 25.7 (21.1 – 28.9) 14.0b
Sep. 21.6 (16.2 – 24.2)bc 30.2 (22.5 – 34.4)c 25.7 (21.1 – 28.9) 14.2b

† Average daily data over planting-harvest growing time, in brackets, range minimum and maximum of total data of growing time.
‡ Average daily irradiance over planting-harvest growing time.
Equal letters within each column represent non-significant differences for p<0.05.
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those related to the biomass of the plants and HI. Empirical 
evidence from companies that are producing pineapple in 
agroecological conditions similar to the WZ site was used as 
a reference for undesirable characteristics of the fruit.

The agronomic indicators were included in one of the 
output files of the model, so that a complete list of the agro-
nomic indicators and their respective predicted value will be 
available when using the model. The predicted value can be 
compared with real results of the farm or the agroecosystem 
that is being studied in order to obtain an objective basis to 
develop strategy to improve each of the agronomic indica-
tors.

Results and discussion

Data collection and experiments
The use of the phenological stages as defined by Vásquez-

Jiménez et al. (2023) and contrasting environments of the 
experimental plots resulted in different growth responses of 
the ‘MD-2’ cultivar required for modeling. At the same time, 
these stages allowed us to characterize the growth associat-
ed with a specific agroecosystem, so that the identification of 
the agronomic indicators of production was possible, which 
allows the model not only to predict growth and productiv-
ity, but also to use agronomic indicators as analytical input 
to interpret the specific improvement opportunities of agro-
ecosystems.

Model improvement
1. Why RGR and not photosynthesis?  The most ad-
vanced crop growth models are based on photosynthesis 
(Hoogenboom et al., 2023), but until now, the pineapple mo-
del does not have sufficient data on the dynamics of photo-
synthesis and dry matter partitioning to predict growth. CAM 
photosynthesis and related metabolism plays a major role in 
photosynthate allocation, but currently the data only explain 
different intensities of metabolism under certain controlled 
conditions of temperature, CO2 concentration, and light and 
dark conditions (Connelly and Bartholomew, 1971; Horie et 
al., 2019; Ritchie and Bunthawin, 2010; Zhu et al., 1997a, b). 

The results from these experiments do not explain differen-
ces in photosynthetic rates for these conditions, which are 
needed for a robust model that simulates the dynamics of 
photosynthesis and dry matter partitioning. A recent study 
(Hartzell et al., 2021) proposed modeling the non-linear dy-
namics of CAM productivity and water use for global predicti-
ons using Opuntia ficus-indica and Agave tequilana. However, 
the plant genera used by these authors is very different from 
the Ananas species, and the global prediction approach is not 
compatible with the pineapple agroindustry, which requires 
site-specific information.
2. Improvements.  In addition to improving the model for 
the ‘MD-2’ cultivar, which is the most important cultivar in 
terms of worldwide production volume (Sanewski et al., 
2018), the model’s main improvement is the prediction of 
new vegetative stages with data from contrasting environ-
ments to simulate the effect of the agroecosystem on dry 
matter partitioning.

Our data showed significant phenotypic plasticity in the 
different structures of the plant, mainly between the leaves 
and the stem, clearly dependent on the environment where 
the plant was grown. The differences in the phenotypic plas-
ticity allow us to define and build agronomic indicators as-
sociated with the different agroecosystems where pineap-
ple is grown and understand the reason for the agronomic 
differences, that occur between agroecosystems such as HI, 
forcing quality and productivity. Therefore, for pineapple a 
model based on the RGR is an important step in simulating 
phenotypic plasticity attributed to the environment.

Model calibration
The different statistics for model calibration for phenol-

ogy and growth are shown in Table 2. It also includes specific 
agronomic indicators that are analyzed in the final section of 
this paper that describes the utility of the model. The discus-
sion is divided into two parts including the performance of 
the model in predicting phenology and in predicting growth.
1. Phenology.  The precision of a growth prediction mo-
del depends, in part, on determining the specific moment 
in which the characteristic development traits are reached 
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FIGURE 2.  Simulated vs. measured days to physiological maturity in days after sowing for cultivar ‘MD-2’. Actual 
data from a pineapple farm in Costa Rica that produces ‘MD-2’ for export. 
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red days to physiological matu-
rity in days after sowing for cul-
tivar ‘MD-2’. Actual data from a 
pineapple farm in Costa Rica that 
produces ‘MD-2’ for export.
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by the plants. The traits that were determined visually and 
shown in Table 1 have an accuracy of approximately one 
week for V-Stages and one day for R-Stages based on how 
often field observations are taken (Vásquez-Jiménez et al., 
2023). The accuracy of the model in predicting phenology 
(days after planting) is high, with a d-Stat > 0.93 for the 
V-Stages RI to LC2 (Table 2). The average values should not 
be considered as a reference for the duration in days of a gi-
ven phenological phase, since these averages were obtained 
from three contrasting agroecosystems.

When the statistic that compares simulated or measured 
values involves predicting the accuracy of a variable with a 
predefined fixed value, for example all 13 leaves in LC1 (such 
as Std. Dev, r2 and dStat), the statistic value may not reflect 
the accuracy of the model. In a review of statistical indices for 
the evaluation of the performance of crop models, Saldaña-
Villota and Cotes-Torres (2021) concluded that the coeffi-
cient of determination is not a useful statistic and that the 
root mean square error is preferred. The conclusion of these 
authors is clearly reflected in the cases mentioned above, 
or when the value to be predicted corresponds to the initial 
value of a variable. In these specific cases, the best statistic 
to check the accuracy of the model is the root mean square 
error.

For example, the standard deviation of both the simu-
lated and measured values of around 100 days in the LC1 vs. 
LC2 or LC3 phenological stage (Table 2) is high. This is be-
cause at the CZ site this stage took around 310 days, at the TZ 
site it took about 104 days, and at the WZ site it took about 
93 days. However, because NF occurred at the CZ site, the 
phenological stages LC2 and LC3 were not reached. There-
fore, the standard deviation is less than 15 days (two weeks) 
since the calculation is composed only of data from the TZ 
and WZ sites.

During the calibration of the V-Stages, the base tempera-
ture that provided the best fit between simulated vs. meas-
ured values was 13 °C, while it was 2 °C for the R-Stages. 
This difference in base temperatures between vegetative and 
reproductive phenological stages found for these three en-
vironments demonstrates the pineapple’s high phenotypic 
plasticity, which is reflected in the high demand for photoas-
similates by the inflorescence and infructescence.

The use of data from contrasting conditions results 
in a more robust model. For example, in the cold zone the 
leaf area is smaller because the partitioning to the stem is 
greater compared to the warmer zones. Stem dry matter is 
much higher for low temperature conditions than for warm 
areas and it has a significant effect on the HI. To simulate 

Table 4.  Example of comparative and interpretive use of model outputs (specifically agronomic indicators) vs. farm data. The 
columns Farm results and Model outputs are hypothetical but based on real empirical evidence of different agroecosystems 
that grow the ‘MD-2’ pineapple cultivar.

Agronomic indicators Farm 
results

Model 
outputs

Additional condition
(weather and field evidence)

Potential 
interpretation

Agronomic 
action

Harvest Index (HI) <0.60 >0.70 Big plants
Heavy stems
WZ Like climate

Poor forcing quality.
See WARNING.

Improve forcing quality

Fruitlets per fruit <115 >140 Very large fruitlets
Bracts split in half
Good forcing criteria and 
100% plants forced.

Poor forcing quality.
See WARNING.

Improve forcing quality

Fruitlets per fruit <115 >140 Normal size fruitlets.
HI >0.7.
TZ Like climate.

Growth limiting factor 
affecting

Detect, correct growth 
limiting factor.
Check water balance by 
phenological stage.
Check plant nutrition.

Physiological maturity 
completion several 
days apart

Reached Not 
reached

Fruitlets per fruit <115.
Very large fruitlets.

Poor forcing quality.
Few fruitlets the fruit 
reaches physiological 
maturity before.
Bad forcing criteria.

Improve forcing quality 
and forcing criteria.

Leaf cycle 3 
completion

Not 
reached

Reached WZ Like climate.
TZ Like climate.
Small plants.

Several growth 
limiting factors 
affecting.

Detect, correct growth 
limiting factor.
Check water balance by 
phenological stage.
Check plant nutrition.
Check seed quality.

Above ground bio-
mass at forcing (ton 
ha-1)

>7.0 >7.0 High level of technological 
management but:

In farm:
HI <0.60
There is never NF.

In farm and model output:
LAIX >2.50

WARNING:
This agroecosystem 
tends to have low 
quality induction. 
Low productivity.

Investigate new forcing 
strategies. The agroindustry 
standard can obtain 100% 
induction factor but with low 
induction quality.

Detect, correct growth 
limiting factor.
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the phenotypic plasticity of a pineapple cultivar correctly, 
two or more climatic conditions must be considered while 
they should be significantly different from each other. Since 
the prediction equations follow a polynomial projection, the 
model assumes that the phenotypic plasticity of the cultivar 
will be correctly simulated based on the weather conditions.

High phenological precision is needed in order to predict 
ripening and harvest dates to ensure shelf life and to meet 
agroindustry volume production requirements.

The R-Stages Open Heart, Early Anthesis, and Final An-
thesis were calibrated to serve as reference points to predict 
the harvest date or physiological maturity of the fruit (with 
special interest in NF). The precision of the calibration be-
tween simulated vs. measured values was high (Table 2) 
ranging from a d-Stat of 0.96 to 0.99.

In the pineapple agroindustry, the prediction of physi-
ological maturity of the NF fruit is critical for harvest and 
marketing (Bartholomew, 2014). The three R-Stages, i.e., OH, 
EA, and FA, can be agronomically estimated by sampling to 
determine the occurrence date for each of the stages and 
then basing the prediction of NF physiological maturity on 
the dates for the other stages. In other words, to predict the 
physiological maturity date of NF with the model, the natural 
induction date must first be predicted.

The precision of the calibration between simulated vs. 
measured values for Physiological Maturity and Harvest was 
very high with a d-Stat value of 1 (Table 2), as expected from 
the high precision of the previous R-Stages. It also confirms 
the usefulness of using these stages for model calibration.
2. Growth.  The differences between measured biomass and 
leaf area at the different V-Stages in CZ were visible to the na-
ked eye. These values were also significantly different from 
those measured in TZ and WZ, mainly due to the low tempe-
rature. The differences between the minimum and maximum 
temperatures and irradiance at the three zones (Table 3) 
were found to be statistically significant (P < 0.05). In most 
of cases the differences between the biomass and leaf area 
between TZ and WZ were less evident to the naked eye, but 
the values were statistically different (P < 0.05) in most cases.

The model was slightly less accurate in simulating growth 
with values for d-Stat that were around 0.83, except for FNL 
which had a d-Stat value of 0.36 and LC1 which had a d-Stat 
value of 0.74 (Table 2).

The d-Stat value for biomass in the FNL phenological 
stage between simulated vs. measured values is low because 
the data points cluster around the same value. The linearity 
assumption (Ratner, 2009) between the observed and simu-
lated values of the biomass variable in stage FNL was not met. 
Therefore, other statistical analyses should be considered to 
evaluate the accuracy of simulated values when compared to 
observed values. The value of the Mean Ratio statistic was 
1.01 for biomass, which means that there is a high similarity 
between the simulated and observed values. Due to the short 
time between sowing and the FNL stage, the average value 
for biomass correctly represents all study sites. However, due 
to the short time between sowing and the FNL stage, the non-
uniformity of the seed can skew the observed data and alter 
the precision of biomass estimation. This imprecision in the 
observed values at the beginning is mitigated with the use of 
the SEEDQLY variable (see Equation 5 in Materials and meth-
ods), but its effect is better reflected from the next stage LC1.

The relatively low d-Stat value of 0.74 for biomass in the 
LC1 stage between simulated vs. measured values is due to 
an underestimation of the biomass in two samples from the 
September sowing. This underestimation occurs when there 

is a lack of uniformity in the weight of the sampled seeds, 
but it does not imply that there is a problem with the simu-
lation. Because during the LC1 stage the partitioning of dry 
matter is mainly directed at the production of new leaves 
and the number of leaves is close to the estimate Mean Ra-
tio of 0.97 between simulated vs. measured values (Table 2), 
we concluded that the differences between simulated and 
observed values for biomass during LC1 are more related to 
the uniformity of seed weight at sowing and not the actual 
simulation of biomass. Uniformity during sowing is a prob-
lem because the pineapple seed is asexual or vegetative and 
uniform seed selection is an issue to be resolved in the pine-
apple agroindustry (Vásquez-Jiménez et al., 2023).

There are no data for LC2 and LC3 for this zone because 
in CZ the plants were induced naturally prior to LC2, and be-
cause flowering interrupts the production of new leaves in 
the pineapple plant (Bartholomew, 2018).

The prediction of the foliar cycles will always be close to 
the fixed values of 13, 26, and 39 leaves for the correspond-
ing leaf cycles LC1, LC2, and LC3. Both the simulated and ob-
served values are oriented towards the same predetermined 
fixed value, and the assumption of linearity will not be met 
(Ratner, 2009). Therefore, the best statistics to evaluate pre-
cision between simulated vs. measured values for the vari-
able number of leaves in each leaf cycle are the Mean Ratio, 
which is greater than 0.97 in all cases, and the RMSE, which 
is less than 1.84 in all cases (Table 2).

The data show a high prediction precision for LAI. Al-
though in most cases the r2 and d-Stat statistics have high 
values that are close to 1, they are not objective comparisons 
of the predicted and observed data for LAI. The values are 
close to 1 primarily due to the effect that the CZ site has on 
the dispersion of the data. The high contrast in the data is 
because of poor leaf development for the ‘MD-2’ plants under 
low temperature conditions with respect to the TZ and WZ 
sites (see Table 3). The best comparisons for this variable are 
again Mean Ratio and RMSE; the Mean Ratio between simu-
lated vs. measured values is close to 1 and the RMSE is low 
at 0.27 (Table 2).

For natural flowering, the number of leaves is more im-
portant than the weight of the plant and the chronological 
age. Despite the cold climate for the CZ site (Table 3), there 
was no natural flowering for more than 400 days for the first 
planting date and more than 330 days for the second plant-
ing date. For both planting dates the incidence of NF began 
between LC1 and LC2. Flowering is artificially induced as 
part of the technical operations in the pineapple industry 
and normally occurs during LC3. To determine the correct 
time for forcing, it is better to use the leaf cycles instead of 
fresh weight. Depending on the weather conditions, fresh 
weight can vary and bias the technical forcing criteria, but 
leaf cycles are a precise and consistent measure (Vásquez-
Jiménez et al., 2023).

In determining the final Harvest stage, the model pre-
dicts biomass with a high precision, while the same is also 
true for yield (Table 2). The planting density is not calibrated 
in the model, so the estimation of productivity is based on 
the average weight of the fruit and a plant density of 13,333 
Plt ha-1. Therefore, any comparison should be made based on 
this density.

Model evaluation
The data from an export company were used for inde-

pendent model evaluation for the prediction of the maturity 
date. The data simulated by the model and the measured 
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data from a commercial farm were evaluated through a hy-
pothesis test in Infostat. The null hypothesis was accepted 
(P > 0.05), and there was no statistical difference between 
the simulated and measured values. This evaluation was fur-
ther confirmed with a d-Stat value of 0.98 (Figure 2).

Model application
We found that our research confirmed the reports of Bar-

tholomew (2018) regarding pineapple plant characteristics 
(larger plants and greater leaf area) and its agronomic conse-
quences with a low harvest index for very warm climates as-
sociated with agroecosystems. We also identified “agronom-
ic production indicators” that can be used as a diagnostic tool 
for agroecosystems to guide the production of ‘MD-2’. These 
indicators can be used to make production budgets compat-
ible with the production potential of agroecosystems, reduce 
the environmental impact of production practices based on 
financial pressure, and potentially prevent project closure by 
using solid data generated by the model to develop sustain-
able management practices.

A summary of some agronomic indicators and their po-
tential applications are described in Table 4.

Once both the statistically representative field data and 
the model prediction data are known, an analysis can be con-
ducted. For example, if the farm HI is less than 0.6 and the 
model predicts an HI greater than 7.0, while at the field level 
the plants are large, the stems are heavy, and the weather is 
similar to that indicated in Table 3 for the WZ site, it is likely 
that there is poor quality forcing in that agroecosystem. If 
the above-ground biomass at forcing indicator (ton ha-1) is 
greater than 7.0, in general that agroecosystem has a tenden-
cy to decrease the induction quality, which, if not corrected, 
will result in a low productivity. The induction factor and the 
quality of induction are concepts that have been well defined 
(Bartholomew and Sanewski, 2018), but  the induction qual-
ity is normally not considered by the pineapple agroindustry.

Table 4 shows two cases where both the actual field re-
sults and the model outputs for fruitlets per fruit are the 
same, but a review of additional conditions provides differ-
ent information. In the first case, the fruitlets are so large 
that the bracts are divided, giving the fruit an ugly general 
appearance. If the producer assumes that forcing occurred at 
the right time, the most likely problem is the quality of forc-
ing, since the plants developed adequately. Although there 
was sufficient leaf area to produce large fruit, the fruit is 
small with few fruitlets per fruit. In the second case, the fruit-
lets have a normal weight, the HI can be higher than 7.0, and 
the climate is similar to that indicated in Table 3 for the TZ 
site. In this case it is likely that there is a limiting factor such 
as water, nutrition, soil preparation, etc. Since the weather 
conditions are conducive to producing large fruits, there is 
no reason to suspect a poor quality of induction. The fruits 
should have a greater number of fruitlets, but they do not 
because they are only producing the number of fruitlets that 
the weight of the plants and leaf area are capable of filling, 
implying that the plants have a low weight and little leaf area 
due to a limiting factor. This condition could also be due to 
poor agrotechnological practices or forcing that was carried 
out prematurely.

The two previous examples show some of the agronomic 
indicators that are included in the model and the potential 
for analysis and application. Agronomists with experience 
in ‘MD-2’ pineapple cultivation should be able to use all the 
agronomic indicators that are simulated by the model. The 
model can also be used as a tool for investment decision-

making for new pineapple production projects. In this case 
the agronomic indicators of the model can be used to analyze 
an agroecosystem for possible investment, such as a pre-fea-
sibility study, or to infer potential opportunities for specific 
improvement in the technical and operational management 
of established projects.

The model also predicts the harvest date, which can be 
used to budget production volumes of fruit for price and de-
livery negotiation. The R-Stages offer the possibility of asso-
ciating a natural flowering date to estimate the dates of phys-
iological maturity of the plants that flower naturally, which is 
helpful in coordination and logistical planning.

In the case of forcing fruit, the model predicts the harvest 
date based on the forcing date, using the Weatherman tool 
(also available in DSSAT v. 4.8) to first obtain a projection of 
the climate variables necessary so that the model can work 
with future dates.

To predict the harvest date of naturally flowering fruit, 
it is first necessary to conduct field sampling to accurately 
identify the date on which any of the R-stages are met prior 
to physiological maturity. This date will be the reference to 
use in the prediction. Through subsequent trial and error, 
forcing dates are tested until a forcing date is obtained that 
adjusts or predicts the date of the reference R-stage. Once 
this date is found, the predicted harvest date will automati-
cally be the searched harvest date of the naturally flowering 
fruit.

Model potential
We have demonstrated and discussed the most important 

findings of the study, among which we emphasize the capac-
ity of the model for simulation of phenotypic plasticity of the 
‘MD-2’ cultivar as response to the environment. Based on the 
differences in growth and plant characteristics associated 
with phenotypic plasticity, the model can be used to define 
diagnostic agronomic indicators. These can then serve as a 
tool for analysis, agronomic interpretation, and definition of 
management strategies for agroecosystems under pineap-
ple production. However, this required to limit the study to 
some very specific and controlled research conditions. Other 
relevant potentials of the model that are independent of any 
limitations is its ability to predict the harvest date of both 
artificially induced fruit and naturally flowering fruit.

Limitations and recommendations for model 
improvement

This study shows the potential for the model to be a use-
ful tool for the pineapple industry, especially for the ‘MD-2’ 
cultivar. Future research could further enhance the model’s 
potential by using different types and weights of seeds. Other 
areas for model improvement would be the simulation of the 
effect of sowing density, since only one sowing density was 
used in this study for growth calibration. Components that 
need additional research include the effect of simulating lim-
iting factors especially water and nitrogen.

Conclusion
The model improvements made resulted in more accu-

rate phenology prediction and growth prediction. However, 
the accuracy of phenology prediction is greater than the ac-
curacy of growth prediction. The degree of accuracy in pre-
dicting growth depends on improvements or changes in the 
seed selection and standardization paradigm by the pineap-
ple agroindustry at the time of planting. The synthesis and 
demand for photo assimilates in pineapple are very different 
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between vegetative and reproductive phenological stages, 
which is reflected in two highly contrasting base tempera-
tures of 13 °C for V-stages and 2 °C for R-stages. One of the 
main benefits of the improved model is that it can provide 
agronomic indicators that facilitate the agronomic charac-
terization of agroecosystems and the visualization of man-
agement strategies aimed at mitigating the harmful effects of 
the environment on productivity.
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