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Abstract 21 

In the present work, we formulate and solve an inverse problem to recover the 22 

surface relaxivity as a function of pore size. The input data for our technique are the �� 23 

distribution measurement and the micro-tomographic image of the rock sample under 24 

investigation. We simulate the NMR relaxation signal for a given surface relaxivity function 25 

using the random walk method and rank different surface relaxivity functions according 26 

to the correlation of the resulting simulated ��  distributions with the measured �� 27 

distribution. The optimization is performed using genetic algorithms and determines the 28 

surface relaxivity function whose corresponding simulated �� distribution best matches 29 

the measured �� distribution. In the proposed methodology, pore size is associated with 30 

a number of collisions in the random walk simulations. We illustrate the application of the 31 

proposed method by performing inversions from synthetic and laboratory input data and 32 

compare the obtained results with those obtained using the uniform relaxivity assumption. 33 

 34 

Keywords: Surface relaxivity; NMR magnetization decay; Digital Petrophysics; Random 35 

walk; Pore size distribution. 36 
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1 - Introduction 38 

H�  Nuclear Magnetic Resonance (NMR) is a powerful tool for studying reservoir 39 

rock properties, based on the responses of protons in fluid molecules filling the formation 40 

pore space. Porosity, pore size distribution, permeability, capillary pressure curves and 41 

wettability are examples of important petrophysical deliverables that can be accessed via 42 

laboratory and field (downhole and surface) NMR realizations (Coates et al., 1999)(Dunn 43 

et al., 2002).  44 

According to the basic theory, the NMR transversal relaxation rates (1/��) of protons 45 

in molecules of the wetting phase can be enhanced by contact or quasi-contact 46 

interactions with the solid/fluid interfaces. In the limit of the fast diffusion regime, the solid-47 

fluid interaction is the dominant relaxation mechanism and the relaxation rate of a fluid 48 

occupying the pore space can be approximated by (Brownstein and Tarr, 1979): 49 

1
�� = 	� 
���� = 	�

�
��   , (1) 

where (��/�) is the ratio of surface area to pore volume; 	� ( 	, from now on) is the 50 

surface relaxivity, a proportionality constant that characterizes the strength of relaxation 51 

induced by the solid/fluid interfaces; �� is the pore radius and � is the shape factor (1,2 52 

and 3 for planar, cylindrical and spherical pores, respectively). When an estimate for the 53 

surface relaxivity parameter is available, the measured relaxation time distribution can be 54 

converted into a pore size distribution using the equation above. In the formation 55 

evaluation context, the pore size distribution is one of the distinctive NMR deliverables 56 

when compared to the other available geophysical methods.  57 
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The importance of accessing surface relaxivity values for improving the accuracy of 58 

NMR deliverables is described in several papers, such as for example in (Souza et al., 59 

2013), where the authors demonstrated how to calibrate the relaxation term of a classical 60 

NMR permeability model to improve its performance. According to (Saidian and Prasad, 61 

2015), there are three primary types of methods to estimate the surface relaxivity: 62 

i. Iterative variation to match NMR relaxation times with independent measurements 63 

of pore or throat size distribution;  64 

ii. Estimations using rock surface area; 65 

iii. Estimations based solely on NMR measurements; 66 

All of them rely upon the assumption that the surface relaxivity can be represented by a 67 

uniform value. However, as stated in (Keating and Knight, 2012), it is highly unlikely that 68 

all the pore surfaces in a sedimentary rock sample have the same relaxivity value. 69 

In (Arns et al., 2006), the authors cite multiple physiochemical factors that cause the 70 

surface relaxivity to vary in sedimentary formations. Considering the rock formation 71 

depositional, diagenetic, and hydrocarbon-filling mechanisms, it is a reasonable 72 

conjecture that, for at least some cases, some of these factors may be related to pore 73 

size. For example, we can cite mixed wettability reservoirs in which the wettability for 74 

larger pores has been altered to oil-wet due to heavier oil fraction deposition, while the 75 

wettability in smaller pores has remained unaltered (water-wet) (Looyestijn and Hofman, 76 

2006). In this case, the surface relaxivity would be larger for the smaller pores and vice 77 

versa. Another example we can cite are rock formations in which clay and heavy minerals 78 

have been deposited differently according to the pore size. In fact, in (Boggs, 2009) the 79 

author mentions that for sandstones, smaller pores will more likely contain higher 80 
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amounts of clay mineral, while larger pores will have more quartz grains in their 81 

surroundings. In this case, again, the surface relaxivity would be larger for the smaller 82 

pores. The results presented in (Liu et al., 2014) corroborate what is stated here; as for 83 

the investigated sandstone, the authors observed that the surface relaxivity was larger 84 

for the smaller pores, although they offered no justification for such behavior. In the 85 

author’s own words: “The slope of the result in sandstone varies in the different pore 86 

regimes, which implies heterogeneous surface properties in the pores. The surface 87 

relaxivity was estimated to be around 30 μm/s in the pore length ranging from 10 μm to 88 

70 μm, and was continuously increasing in the pores smaller than 10 μm”. To the best of 89 

our knowledge, this is the first and only study reported in the literature that attempted to 90 

investigate the surface relaxivity variation in rock samples. At this point, we would like to 91 

mention that the results obtained in the present work for the investigated carbonate also 92 

indicated a clear tendency of the surface relaxivity to vary with pore size.  93 

Based on the above concept, in this study we formulate and solve an inverse 94 

problem to recover the surface relaxivity as a function of pore size. To the best of our 95 

knowledge, there is no work reported in the literature treating the same inverse problem. 96 

The input data for our technique are the �� distribution measurement and the micro-97 

tomographic image of the rock sample under investigation, and the inverse problem under 98 

consideration is precisely that of (iteratively) finding the surface relaxivity function whose 99 

corresponding �� distribution best matches the �� distribution measurement. To that end, 100 

we simulate the transversal NMR relaxation signal (and the corresponding �� distribution) 101 

for a given surface relaxivity function using a random walk implementation developed in 102 

house and that runs in the sample tomographic image, and rank different surface 103 
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relaxivity functions based on the correlation of the resulting simulated �� distributions with 104 

the reference (measured) �� distribution. The heuristic method used for the optimization 105 

is genetic algorithms. The proposed methodology is suitable for the experimental 106 

characterization of surface relaxivity on preserved pores and also provides the ability to 107 

probe the surface alterations that are chemically induced by alkaline, surfactant and 108 

polymer flooding in enhanced oil recovery (EOR) studies.  109 

The continuation of this article is structured as follows: In Section 2 we formulate 110 

the inverse problem and present the solution strategy, where we describe how we perform 111 

the NMR relaxation simulation from digital images and introduce the concept of 112 

associating the number of collisions in the random walk simulations to pore size. In 113 

Section 3, we illustrate the application of the presented method performing inversions 114 

from (noisy) synthetic and laboratory input data, discuss the obtained results, and 115 

compare them to those obtained with the uniform relaxivity assumption. Then, we 116 

conclude in Section 4.  117 

 118 

2 – Methods 119 

We start this section by highlighting that what we call “inverse problem” in the 120 

present work is the whole problem of recovering the surface relaxivity as a function of 121 

pore size. Likewise, what we call “inversion procedure” (or simply “inversion”) is the entire 122 

computational process to recover the surface relaxivity as a function of pore size. This is 123 

not to be confused with the inverse Laplace transform employed to obtain the �� 124 

distribution from the (simulated) magnetization exponential decay. 125 
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2.1 NMR decay simulation 126 

We use the voxel-based approach of the random walk method (RW) to simulate the 127 

NMR �� magnetization decay �(�) in a rock sample. The sample is described by a 2D or 128 

3D digital image in which the pores are identified in the discrete picture elements that can 129 

be voxels or pixels. The value of �(�) decays according to two relaxation mechanisms: 130 

non-uniform and bulk relaxation. The fluid’s contact with the pore space solid walls 131 

produces non-uniform relaxation ���(�). The bulk relaxation is a fluid property and does 132 

not depend on any property of the confining formation. It is given by ��(�) = ���/��, , 133 

where ��,� is the bulk time. The magnetization at any time � is given by �(�) = ���(�) ⋅134 

��(�).  135 

In the RW simulation, each fluid particle is placed randomly in the pore space and 136 

diffuses in discrete steps across neighboring voxels (Talabi et al., 2009). Whenever the 137 

particle hits the solid wall, it is penalized by a factor "  that depends on the surface 138 

relaxivity " = 2∆	/3$, where ∆ is the image voxel resolution and $ is the fluid diffusion 139 

coefficient (Bergman et al., 1995). There are at least two ways to apply this penalization: 140 

i. Every fluid particle makes the same contribution to the non-uniform 141 

magnetization ���(�). When the walker hits the solid surface, its contribution is 142 

reduced by multiplying it by (1 − ") (Jin et al., 2009)(Tan et al., 2014). 143 

ii. The walker has a probability  "  of being flagged as “killed” 144 

whenever it hits the surface. At time  � , the value of ���(0)  is reduced by a 145 

factor  '�/'(  where  '(  is the total number of walkers and  '�  is the number of 146 

walkers that have not been killed at time � (Valfouskaya et al., 2006). 147 
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We use the first relaxation scheme although the difference of the computational costs and 148 

resulting decays associated with both is negligible.   149 

We observe that the digital image representation of the rock sample can only provide 150 

a discrete approximation of the pore shapes. This may induce inaccuracies in the 151 

estimated decay, as the discretization slightly increases the contact area for the walkers 152 

(Jin et al., 2009). However, we restrict the walker’s motion to perpendicular directions, as 153 

described in (Watanabe and Nakashima, 2002)), obtaining an accurate fit to analytical 154 

results, as shown in Fig. 1. In the figure, the numerical results were obtained with the aid 155 

our RW implementation employed in a discrete approximation of a sphere with radius 156 

twenty-voxel, while the analytical results were obtained with the aid of Eq. (1). 157 

 158 

Figure 1. In the Random Walk simulations we restrict the walker’s motion to perpendicular directions, obtaining 159 

an accurate fit to analytical results (right). The numerical results were obtained with the aid our RW 160 

implementation employed in a discrete approximation of a sphere with radius twenty-voxel (radius )* +, and 161 

∆= - +,) using . = / +,/0 and  1) = ). 30, while the analytical results were obtained with the aid of Eq. (1). 162 

 163 

The result of the RW simulation is the value of the magnetization �(�) at discrete 164 

times �4 = 5∆�, 5 = 1,2, … , 7. To interpret the information embedded in this signal, the 165 

inverse Laplace transform is applied. This consists of finding the coefficients �8, 9 =166 

1,2. , … , : that provide the best fit for the relation: 167 
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�(�4) = ; �8�� �<��,=  
>

8?�
   . (2) 

The plot of coefficients �8 as a function of the corresponding times ��,8 is typically called 168 

the �� distribution. Obtaining these coefficients can be stated as a least squares problem 169 

and its ill conditioned nature is associated with the presence of noise in the measured 170 

signal �(�) (Prange and Song, 2009). Different noise levels associated with the same 171 

measurement may result in different ��  distributions, which may reveal features 172 

associated with the noise and not with what was probed in the sample. This effect is 173 

limited by the Tikhonov regularization (Day, 2011), which consists of solving the 174 

optimization problem: 175 

minC ‖EF − G‖� + I�‖F‖� , (3) 

where E is a matrix whose entries are given by J4,8 = �� K<
L�,=, , is a vector whose entries 176 

are the discrete values �(�4), C is the vector of coefficients �8, and I is a regularizer that 177 

controls the weight of the solution vector C  relative to the minimization of the error 178 

‖MC − ,‖. In the present work we use the L-curve criterion to determine the regularization 179 

value (Hanke, 1996)(Hansen, 1999)(Hansen and O’Leary, 1993). 180 

2.2 - Inverse problem methodology 181 

We state the inverse problem as follows: with the aid of RW simulations performed 182 

on the rock sample digital image, determine the surface relaxivity function whose 183 

corresponding �� distribution best matches the reference (measured) �� distribution.  If 184 
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the surface relaxivity function is parametrized, the inverse problem may be stated as an 185 

optimization task in which these parameters must be adjusted. 186 

2.2.1 - Surface relaxivity function parametrization 187 

We benefit from the fact that in a RW simulation the total number of wall collisions 188 

of a walker is proportional to the size of the pore in which it resides (the larger the pore 189 

is, the smaller the total number of wall collision is, and vice versa), and instead of directly 190 

associating a surface relaxivity value with each portion of the solid/fluid interface 191 

according to the pore size (which would be impossible in practical implementations), we 192 

associate a surface relaxivity value to each total number of wall collisions. In other words, 193 

the surface relaxivity  	 = 	(N), where N is the total number of wall collisions normalized 194 

to the total number of iterations in the RW simulation, as seen in more details in Section 195 

2.2.2. 196 

In the present work, we assume that the surface relaxivity function 	(N) is a linear 197 

combination of basic shape functions. We choose Sigmoid shape functions with four 198 

parameters to adjust:  199 

	(N) = ; JO +
P

O?�

QO − JO
1 + ���R(S�SR)   . 

(4) 

The values of QO and JO control the minimum and maximum values of the sigmoid, the 200 

value of NO defines the transition point (from minimum to maximum or vice-versa) and the 201 

value of TO controls the slope of the curve. This choice for the shape functions is suitable 202 

to find piecewise continuous functions, establishing 7 + 1 different horizontal relaxivity 203 

asymptotes for different pore size intervals. Notably, it would be suitable to approximate 204 
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the experimental results found in (Liu et al., 2014), for instance. The sharpness of the 205 

relaxivity transitions is controlled by the slope. We limited the number of shape functions 206 

here to 7 = 2, reducing our search to 8 optimization parameters. We emphasize that with 207 

this choice for the shape function we have increased flexibility and can represent relaxivity 208 

functions that either increase or decrease with the pore size, as well as to represent a 209 

uniform value, as shown later in Section 3.2. Examples of different surface relaxivity 210 

functions, illustrating some of the different tendencies that we can recover using the sum 211 

of two Sigmoid functions, are given in Fig. 2. 212 

213 

 214 

Figure 2. Examples of different surface relaxivity functions, illustrating some of the different tendencies that 215 

we can recover using the sum of two Sigmoid functions. The vectors of parameters (U-, M-, V-, W-, U), M), V), W)) 216 

are chosen as follows: M = (X*, ). /, *. X, Y/, -/, ). /, *. Z, /*) , W = (). /, -/, *. Z, -**, ). /, -/, *. X/, /*) , [ =217 

(-, )*, *. 3, -*, -*, -, *. ), -*) , \ = ()*, )*, *. /, )/, )*, )*, *. ), ]**) , ^ = (*. /, X/, *. )/, ), *. /, X/, *. /, )) , _ =218 

(X/, -, *. `, -*, -, -/, *. ), X/).  219 
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We end this section by making two final comments: First, we expect that a 220 

distribution of total number of wall collisions (and not a single value) is associated with 221 

each pore size (range). This is why we consider the Sigmoid functions for the surface 222 

relaxivity function, because it provides the flexibility to associate the same surface 223 

relaxivity value to an entire N  range. Even if the distributions of total number of wall 224 

collisions associated with the different pore size ranges partially overlap, we expect that 225 

to have a residual impact in the inversion results. This is exactly what the example in 226 

Section 3.3 indicates because we could precisely recover the original surface relaxivity 227 

function. Second, in principle, in actual rocks, pores of the same size can present different 228 

surface relaxivities. Accordingly, assuming that only one exact surface relaxivity value will 229 

be associated with each N is an idealization, and we make this assumption to formulate a 230 

treatable inverse problem. Realistically, we expect that for each pore size range the 231 

surface relaxivity value fluctuates around an average value. In that sense, we do not 232 

expect that the sum of two Sigmoid functions perfectly fits the actual surface relaxivity 233 

variation, but that it well represents the eventual overall tendency of the surface relaxivity 234 

to vary with pore size. 235 

2.2.2 - The Mapping Simulation 236 

As we will see next, our inverse method evaluates a candidate function 	a(N) by 237 

executing a RW simulation based on it. To that end, it is crucial to associate a value N to 238 

each walker. This is done only once, in the beginning of the optimization procedure, with 239 

the aid of a preliminary RW simulation, in which every walker is associated with a variable 240 

that is increased by 1 whenever it hits a solid wall. At the end of the simulation, we have 241 

the normalized set of pairs b5, c<
PdK

e , 5 = 1, … , ', where ' is the total number of walkers, 5 242 



 

13 
 

is the walker identification, f4 is its corresponding total number of collisions, and 7g� is 243 

the total number of iterations. As mentioned earlier, we define N4 = f4/7g�. We will refer 244 

to this preliminary RW simulation as the Mapping Simulation (MS), because it provides a 245 

classifier value N to each walker. Notice that no surface relaxivity (or bulk relaxivity) needs 246 

to be associated with the pores for the MS. Typically, in the MS we consider 7g� = 15,000 247 

for an image resolution of 1µm, which corresponds to around 2.8 seconds (the usual 248 

relaxation time measured in the laboratory experiment). 249 

According to what is said above, we note that we assign the same N   value to 250 

walkers that remained the entire time within pores of the same size and to those that 251 

visited pores of different sizes, as long as they have had the same number of wall 252 

collisions in the MS. It is impossible at this point to precisely predict the impact of this 253 

approximation in the inversions, but, according to our preliminary tests, it is residual. 254 

2.2.3 - Shape function optimization 255 

To simulate a random walk decay based on a candidate function 	a(N) we proceed 256 

as follows: We assign to each walker (indexed by 5) a relaxivity value 	4 according to its 257 

 N4, computed during the MS, i.e., 	4 = 	i(N4). Then, the walker 5 starts its motion at the 258 

same position it started in the MS (carrying its own relaxivity value 	4) and is penalized 259 

by the factor " = 2∆	4/3$ whenever it hits a solid wall. We perform this with all of the 260 

walkers individually and sum the individual magnetization contributions at each time step. 261 

At the end of this procedure we have the exponential decay and the corresponding �� 262 

distribution (applying the inverse Laplace transform to the simulated exponential decay) 263 

associated with the function 	a. 264 
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We use genetic algorithms (GAs) to find the surface relaxivity function whose 265 

corresponding simulated �� distribution best matches the reference  �� distribution. We 266 

expect them to be robust to treat noisy and incomplete input data, and to reduce the 267 

probability of becoming trapped at local minima. The purpose of GAs is to apply 268 

environmental pressure (survival of the fittest) to a set of possible solutions to the problem 269 

(Eiben and Schoenauer, 2002).  In our case, a possible solution (that is typically called 270 

an individual) is encoded as a vector of 8 parameters (Q�, J�, N�, T�, Q�, J�, N�, T�) that 271 

characterize the candidate relaxivity function  	i(N) (see Eq. (4)). For each individual, a 272 

RW simulation is performed as described above, and an associated �� distribution kl is 273 

obtained. Each individual is then ranked according to the correlation between its 274 

associated �� distribution and the reference �� distribution, i.e., k ⋅ kl/m‖k‖nklno, where 275 

k is the reference �� distribution. A perfect match corresponds to a correlation equal to 1. 276 

 A common issue in GAs is premature convergence (Pandey et al., 2014). Here, we 277 

use a variant of the island methodology to avoid it (Whitley et al., 1998). Our GA 278 

implementation divides the population of '  individuals (a set of '  surface relaxivity 279 

functions) in p  subpopulations (islands) of the same size '/p . Each of these 280 

subpopulations is optimized locally, recombining the information of its individuals using a 281 

whole arithmetic operator (described in  (Eiben and Smith, 2007)). This recombination is 282 

executed in pairs, such that two random individuals (Q��, J��, … ) , (Q��, J��, … ) are combined 283 

to produce another two individuals q(Q��, J��, … ) + (1 − q)(Q��, J��, … )  and (1 −284 

q)(Q��, J��, … ) + q(Q��, J��, … )  where q  is chosen randomly in the interval  [0, �
� ] . After 285 

calculating the correlation of the  �� distributions associated with these new individuals 286 
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with the reference  �� distribution, the individuals whose associated �� distributions result 287 

in the poorest correlations are discarded, keeping the subpopulation size constant at each 288 

island. This procedure is repeated iteratively, allowing all individuals to recombine only 289 

once in each step. After a certain number of iterations t, the individuals with the best 290 

correlations migrate to another island.  We also apply a mutation operator when the entire 291 

island population becomes very similar, i.e., when the relative difference between all 292 

individuals is less than 10%.  The mutation operator picks one of the individual´s entries 293 

and alters it by a randomly chosen percentage in the interval [0,100].  In our tests, a 294 

population of 48 individuals divided into 4 islands was enough to guarantee convergence 295 

after approximately 50 iterations. A probability of 10%  for mutation was considered.  296 

 297 

3 - Numerical results 298 

3.1 - Effects of surface relaxivity variation 299 

Here we illustrate the effect of the surface relaxivity variation on the �� distribution 300 

through a synthetic example. A random set of three circular pore families was placed on 301 

a white background, as shown in Fig. 3. By pore family, we mean pores within the same 302 

size range. A different gray-scale value was associated with each of the families, 303 

corresponding to a different relaxivity value (a smaller relaxivity of 5 w:/x was associated 304 

to the larger pores, a medium relaxivity of 20 w:/x was associated to the medium pores 305 

and a larger relaxivity of 45 w:/x was associated to the smaller pores.) A 2D random 306 

walk simulation was performed on this synthetic medium, such that whenever a walker 307 
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hits a solid wall, it picked the gray-scale value of the collision pixel, i.e., its magnetization 308 

was reduced by the corresponding relaxivity value.   309 

A bulk relaxation time of ��,� = 2.8x and a resolution of ∆= 2 w: was assumed. A 310 

total of 54, 575 walkers were used in the simulation, such that each pixel associated to 311 

the pore space received one walker, filling the entire pore space. To simulate noise, we 312 

synthetically added white noise to the simulated NMR magnetization decay, such that the 313 

signal to noise ratio (SNR) was 368. The SNR here is estimated as �'� = z{||
}{||

 , where 314 

w�(( is the average of the first 100 decay samples (the first 100 simulated values) and 315 

~�(( is the standard deviation of the last 100 decay samples. In addition, we used a 316 

magnetization threshold stopping criterion value of 0.25%. The same stopping criterion 317 

was also used in all the simulations shown in the subsequent sections. The regularization 318 

was chosen according to the L-curve criterion. 319 

 320 

 321 

Figure 3. The synthetic medium used in the simulations presented in Sections 3.1, 3.2 and 3.3. A random set 322 

of three circular pore families was placed on a white background. A different gray-scale value is associated 323 

with each of the pore families. For the simulation presented in Section 3.2, the same relaxivity value was 324 

associated with all three families. For the simulation presented in Section 3.3, a different relaxivity value was 325 

associated with each of the families. 326 
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 327 

 328 

Figure 4. The 1) distribution obtained from the decay simulated with varying surface relaxivity (continuous 329 

line) and the 1) distribution obtained from the decay simulated with an average uniform surface relaxivity of 330 

)* �,/0 (dashed line). The two curves are largely different. In particular, the simulation assuming a uniform 331 

surface relaxivity produced a predominantly unimodal and narrower 1) distribution.  332 

  333 

The ��  distribution obtained from the decay simulated with the varying surface 334 

relaxivity is shown in Fig. 4 (continuous line). The figure also shows the �� distribution 335 

obtained from the decay simulated with an average uniform surface relaxivity of 20 w:/x  336 

(dashed line), i.e., the average uniform surface relaxivity of 20 w:/x was associated with 337 

all the three pore families. The two relaxation curves are largely different for the same 338 

pore size distribution. In particular, the simulation assuming the average uniform surface 339 

relaxivity produced a predominantly unimodal and narrower ��  distribution. The �� 340 

distribution is narrower for the uniform relaxivity case because, at the larger pores, the 341 

relaxation occurs more rapidly in the uniform relaxivity case than in the varying relaxivity 342 

case (because of the considered surface relaxivities.) Therefore, the portion of the T2 343 

distribution at the right (the part associated with the larger pores) is narrower for the 344 
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uniform relaxivity case than for the varying relaxivity case (we recall that relaxation time 345 

increases to the right). On the other hand, at the smaller pores, the relaxation occurs 346 

more slowly in the uniform relaxivity case than in the varying relaxivity case (again, 347 

because of the considered surface relaxivities). Therefore, the portion of the T2 348 

distribution at the left (the part associated with the smaller pores) is again narrower for 349 

the uniform case than for the varying case. As a result, the T2 distribution as a whole is 350 

narrower for the uniform case then for the varying case. 351 

This is an example of how erroneous or incomplete assumptions regarding the 352 

surface relativity can affect the NMR simulation. The effect of varying surface relaxivity 353 

on petrophysical deliverables derived from NMR relaxation distributions has been 354 

discussed in other works (e.g. (Arns et al., 2006) and (Ryu, 2008)). 355 

3.2 - Synthetic case with uniform relaxivity 356 

We now evaluate the performance of our method to estimate the surface relaxivity 357 

for the uniform relaxivity case. For this purpose, we associate 	 = 20 w:/x with all the 358 

three pore families shown in Fig. 3. Our reference ��  distribution comes from a RW 359 

simulation executed, again, with 54,575 walkers (filling the entire pore space). To check 360 

the robustness of the method for noisy input data, we considered two different SNRs in 361 

the simulated decay, a SNR of 298, compatible with NMR experiments performed in the 362 

lab (Fig. 5), and a SNR of 31, compatible with logging operations (Fig. 6). In Figs. 5(A) & 363 

6(A) we show the surface relaxivity function obtained with the aid of our method and in 364 

Figs. 5(B) & 6(B) we show the match of the resulting simulated �� distribution with the 365 
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reference. A total of 148 generations were iterated (in general, each optimization took 366 

approximately 30 generations to converge).  367 

 368 

Figure 5. (A) Comparison between the surface relaxivity function obtained from the inversion procedure and 369 

the “true” one. (B) The corresponding  1) distributions. The SNR considered here is 298, which is compatible 370 

with NMR experiments performed in the lab. � = *.-- 371 

 372 

 373 

Figure 6. (A) Comparison between the surface relaxivity function obtained from the inversion procedure and 374 

the “true” one. (B) The corresponding  1) distributions. The SNR considered here is 31, which is compatible 375 

with NMR logging operations. � = X. -] 376 
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The results validate our implementation and show that our method performs well for 378 

the uniform relaxivity case, where the obtained two-sigmoid combination adapted very 379 

well to the uniform relaxivity value even for the noisiest case. We repeated each inversion 380 

4 times and obtained the same results, indicating that the problem has only one global 381 

minimum. 382 

3.3 - Synthetic case with varying relaxivity 383 

The second test corresponds to the scenario in Section 3.1, i.e., the medium is 384 

represented in Fig. 3 and a different surface relaxivity value was associated with each of 385 

the three pore families 386 

. In Figs. 7(A) & 8(A) we compare the surface relaxivity function estimated with the 387 

aid of our method with the original surface relaxivity variation (continuous line vs. dotted 388 

line), while in Figs. 7(B) & 8(B) we show the match between the resulting �� distribution 389 

and the reference. For Fig. 7, we have considered a SNR of 338, compatible with NMR 390 

experiments performed in the lab, while for Fig. 8, we have considered a SNR of 32, 391 

compatible with logging operations. As in the previous section, we repeated each 392 

inversion 4 times and obtained the same results, indicating that the problem has only one 393 

global minimum. The figures show that the method performed well even for the noisiest 394 

case, validating both methodology and implementation. In addition, a uniform surface 395 

relaxivity value does not exist that results in a good match for the reference �� distribution. 396 

This is clearly shown by the dashed curves in Figs. 7(B) & 8(B). We emphasize that the 397 

uniform surface relaxivity value used for each figure was also determined from an 398 

optimization procedure, i.e., there is no other uniform surface relaxivity value that results 399 

in a better match for the reference �� distribution than those shown in Figs. 7(A) and 8(A). 400 
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 401 

Figure 7. (A) Comparison between the surface relaxivity function obtained from the inversion procedure and 402 

the “true” one. (B) The corresponding  1) distributions. The SNR considered here is 338, which is compatible 403 

with NMR experiments performed in the lab. The 1)  distribution corresponding to the uniform relaxivity 404 

represented in (A) is also plotted in (B). � = -
) 405 

 406 

 407 

Figure 8. (A) Comparison between the surface relaxivity function obtained from the inversion procedure and 408 

the “true” one. (B) The corresponding  1) distributions. The SNR considered here is 32, which is compatible 409 

with logging operations. The 1) distribution corresponding to the uniform relaxivity represented in (A) is also 410 

plotted in (B). � = X. *Z. 411 
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3.4 - Laboratory case 412 

Now we apply the developed methodology to an actual sedimentary rock core. The 413 

reference �� distribution is now the actual �� distribution from the lab. We also compare 414 

the obtained results with the experimental determination of an average (uniform) effective 415 

transverse surface relaxivity. The chosen sample is a calcite limestone outcrop, Edwards 416 

White (EW), from the Edwards Formation located in the central-west state of Texas 417 

(USA), with gas porosity and permeability of 0.28 and 5.5	:$, respectively (Silva Jr et al., 418 

2015). A slice of the sample tomographic image is shown in Fig. 9. 419 

 420 

Figure 9. A slice of the Edwards White’s tomographic image. 421 

 422 

In the laboratory, an average effective relaxivity can be calculated from the two 423 

dimensional NMR experiment called $ % ��  (diffusion coefficient �� ), a technique that 424 

measures the correlation between both parameters (Souza et al., 2013)(Zielinski et al., 425 

2010). Fig. 10 shows the $ % ��  map signal (contour lines) of the EW core. The 426 

experimental details of the NMR technique used to acquire the �� data and to perform the 427 

$ % �� are outside the scope of this work and can be found in (Luo et al., 2015)(Souza et 428 
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al., 2013) (Zielinski et al., 2010). From the $ % �� experiment, we determined an average 429 

uniform surface relaxivity of 15	w:/x. 430 

 431 

Figure 10. 2D NMR \% 1) map of the Edwards White sample, showing the Padé fitting (black dotted line) that 432 

resulted in an effective .) � -/	�,/0. Additional fittings (black dashed lines) considering the error on the input 433 

parameters: cementarion coefficient (m) and bulk diffusion coefficient \*. The estimated error determined was 434 

�.) � �)	�,/0. All the fittings were performed considering the average of \ for each 1) bin.  435 

 436 

The SNR of the decay signal measured in the lab was estimated at 378. In Fig. 11, 437 

we show the surface relaxivity function estimated with the aid of our method, and in Fig. 438 

12, we show the match between the resulting and measured �� distribution. As in the 439 

previous sections, we repeated the inversion 4 times and obtained the same results, 440 

indicating that the problem has only one global minimum. In Fig 12, we also plot the �� 441 

Edwards White Carbonate

Bulk D of Brine at 30
o
 C

 

 

10
-2

10
-1

10
0

0

2000

4000

T
2
 (s)

m
ar

g
in

al
 d

en
si

ty 05000
10

-10

10
-9

10
-8

D
 (

m
2
s-1

)

marginal density

2000

4000

6000

8000

10000

∆ρ
2
 = +/- 2 µm/s error

Log-mean of D

Pade fitting



 

24 
 

distribution resulting from a RW simulation performed with the uniform relaxivity of 	 �442 

15	w:/x (the value estimated in the lab.) 443 

 444 

Figure 11. Edwards White’s surface relaxivity function obtained from the inversion procedure. The surface 445 

relaxivity magnitude decreases with pore size. More specifically, the obtained relaxivity function suggests the 446 

existence of (approximately) two different horizontal relaxivity asymptotes associated with two different pore 447 

size intervals. The SNR of the measured NMR decay signal was estimated at 378. 448 

 449 

 450 

Figure 12. Comparison between the 1) distribution corresponding to the surface relaxivity function shown in 451 

Fig. 11 and the 1) distribution measured in the lab. The 1) distribution corresponding to the uniform relaxivity 452 

of -/	�,/0 (the relaxivity value obtained from the \% 1) experiment) is also plotted in the figure. � � *. -] 453 
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The results shown in Fig. 11 indicate that the magnitude of the surface relaxivity 455 

decreases as the pore size increases. More specifically, the obtained surface relaxivity 456 

function suggests the existence of (approximately) two different horizontal relaxivity 457 

asymptotes associated with two different pore size intervals. In addition, Figure 12Fig. 12 458 

shows that the relaxivity function shown in Fig. 11 leads to a �� distribution that accurately 459 

matches the reference. In fact, it matches the reference much more precisely than the �� 460 

distribution obtained with the uniform surface relaxivity value of 15 w:/x. In that sense, 461 

we truly believe that the relaxivity function obtained with the aid of the proposed 462 

methodology is a better estimate for the surface relaxivity, for any practical implication, 463 

than the uniform value obtained from the $ − �� experiment. The �� distribution obtained 464 

with the aid of the proposed method does not match well the reference only in a small 465 

portion at the left, related to the relaxation at the smallest pores. We can think of some 466 

potential explanations for this local mismatch. First, the digital image may not have 467 

captured accurately the micro-porosity (we recall here that the gas porosity is 28% while 468 

the porosity digitally calculated from the tomographic image is approximately 20.5%). 469 

Second, the physical dimensions of the image in which we performed the RW are shorter 470 

than the physical dimensions of the sample used in the NMR experiment. In that sense, 471 

the image used may not be a perfect representative volume. Third, there are methodology 472 

approximations, as mentioned previously in the text, that can impact the inversion results. 473 

Currently, it is impossible to know for sure the reason for the small local mismatch. 474 

We end this section providing a final comment. In principle, the degree of correlation 475 

between the simulated �� distribution and the reference �� distribution may be indicative 476 

of the error associated with the obtained surface relaxivity function. However, more tests 477 
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need to be performed before we can make that statement. It certainly would be valuable 478 

to check the inversion result’s accuracy and, for each case, determine if the surface 479 

relaxivity variation is indeed linked to the pore size. 480 

 481 

4 - Summary and conclusions   482 

In the present work we formulated and solved an inverse problem to recover the 483 

surface relaxivity as a function of pore size. The input data for our technique are the �� 484 

distribution measurement and the micro-tomographic image of the rock sample under 485 

investigation. We simulate the NMR signal relaxation for a given surface relaxivity function 486 

using the random walk method, and the optimization is performed using genetic 487 

algorithms, where we find the surface relaxivity function that leads to the best match for 488 

the  �� distribution measurement. In the developed methodology, we use the link between 489 

pore size and total number of wall collisions in the random walk simulations. 490 

We evaluate the proposed method’s performance using inversions from (noisy) 491 

synthetic and laboratory input data. The SNRs are compatible with lab experiments and 492 

field log measurements. Regarding the results obtained from synthetic input data, the 493 

method could accurately recover the original surface relaxivity function for the case of 494 

uniform relaxivity as well as for the case of varying relaxivity, for both SNR levels. 495 

Regarding the results obtained from the laboratory input data, we verified that we could 496 

precisely match the measured ��  distribution. On the other hand, the ��  distribution 497 

resulting from the uniform relaxivity assumption did not accurately match the measured 498 

�� distribution. This indicates that the relaxivity function obtained using the proposed 499 
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method is presumably a better estimate, for any practical implication, than the uniform 500 

value obtained from the $ − �� experiment. In principle, the degree of correlation between 501 

the simulated �� distribution and the reference �� distribution may be indicative of the 502 

error associated with the obtained surface relaxivity function. However, more tests need 503 

to be performed before we can make that statement. It would be valuable to check the 504 

inversion result’s accuracy and, for each case, determine if the surface relaxivity variation 505 

is linked to pore size. 506 
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