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Abstract: Currently, metal nanoparticles have varied uses for different medical, pharmaceutical, 12 
and agricultural applications. Nano-biotechnology combined with green chemistry has great 13 
potential for the development of novel and necessary products that benefit human activities, while 14 
encourages the reduction of hazardous reagents for nanoparticle production. Green chemistry has 15 
an important role due to its contribution to unconventional synthesis methods of gold and silver 16 
nanoparticles from plant extracts, which have exhibited antimicrobial potential among other 17 
outstanding properties. Biodiversity-rich countries need to collect and convert knowledge from 18 
biological resources into processes, compounds, methods, and tools, which need to be achieved 19 
along with sustainable use and exploitation of biological diversity. Therefore, this review focuses 20 
on the importance of metal nanoparticles, the use of plant extract for their synthesis as well as other 21 
available methods, and the relevant antimicrobial activity that can be exploited in a sustainable 22 
model of agricultural management through a modern nanotechnological approach. 23 
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 26 

1. Introduction 27 

Currently, Green chemistry has been developed as an alternative to the use of environmentally 28 
harmful processes and products, due to the serious consequences that the world is facing, and the 29 
limited available time to find effective solutions [1-3]. According to Menges, it is suggested that 30 
green chemistry could have saved USD 65.5 billion by the end of 2020 [4]. 31 

 32 
Chen et al. state that circular economies should always aim to balance economic growth, 33 

resource sustainability, and environmental protection [5]. The challenge for biodiversity-rich 34 
countries and scientists is to collect and convert knowledge from biological resources into processes, 35 
compounds, methods, and tools, which need to be achieved along with sustainable use and 36 
exploitation of biological diversity [6-8]. In addition to that, biodiversity exploration has been 37 
presented to the international scientific community as a promoter of the responsible use of nature, 38 
and as a means of obtaining non-harmful components as well. For this reason, different strategies 39 
have been sought to contribute to this field through the use of green processes, such as the creation 40 
of nanoparticles (NPs) from plant extracts [9-11]. 41 

 42 
NPs are a wide range of materials with dimensions below 100 nm, which can be used in various 43 

areas such as medical, pharmaceutical, manufacturing and materials, environmental, electronics, 44 
energy collection, and mechanical industries due to their multiple properties [12-15]. In general, NPs 45 
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can be classified into different groups which include fullerenes, metallic NPs, ceramic NPs, and 46 
polymer NPs [15-16]. Regarding the metallic NPs, their outstanding properties have caused the 47 
development of different methodologies for their synthesis, where gold (AuNPs) and silver (AgNPs) 48 
nanoparticles prepared from plant extracts are of great interest for the researchers in their attempt to 49 
develop suitable antibacterial and antimicrobial agents for agriculture [17-20]. Also, these initiatives 50 
are considered as low-cost processes that allow avoiding toxic-generating products and benefit the 51 
agricultural activity. It is estimated that the preparation of one kg of AgNPs would cost about USD 4 52 
million, while one kg of raw silver costs around USD 14,000 [21,22].  53 

 54 
 In 2009, Raveendran et al. published one of the first green synthesis methods of metal NPs. In 55 
this approach, they employed an aqueous starch solution subjected to heating, silver nitrate, and 56 
glucose as the green reducing agent [23]. After that, researchers like Iravani, and Kumar et al. have 57 
presented high-quality review papers regarding the synthesis of metallic nanoparticles using plant 58 
extracts as a green chemistry approach [24,25]. Since then, synthesis of metal NPs has been 59 
performed by different research groups based on a variety of plants and their structures. Logeswari 60 
et al. developed an eco-friendly synthesis of AgNPs from plant powders of Solanum tricobatum, 61 
Syzygium cumini, Centella asiatica and Citrus sinensis, while Yang et al. performed a biosynthesis of 62 
AuNPs using an agricultural waste mango peel extract [26,27]. Verma et al. and Bagherzade et al. 63 
have shown the antibacterial, and antimicrobial activity of metal NP obtained through green 64 
synthesis using Azadirachta indica leaves, and Crocus sativus L. extracts, respectively [28,29]. 65 
 66 

Due to the nanotechnological boom, unusual physical, chemical, and biological methods have 67 
been developed for the synthesis and production of metal NPs [30-35]. Therefore, this paper seeks to 68 
describe some of these methods, the NPs’ characterization techniques and also, pay particular 69 
attention to AuNPs and AgNPs’ capacity as antibacterial and antimicrobial agents within the 70 
agricultural field. 71 

2. Importance of nanoparticles  72 

2.1. Gold Nanoparticles 73 

AuNPs can be produced in different sizes and shapes (e.g. nanospheres, nanocylinders, 74 
nanowires, and nanocages). AuNPs exhibit in principle, low toxicity, and multiple interesting 75 
chemical, biological, and physical properties such as photo-thermal, optical, electrochemical, 76 
biocompatibility, and they can even act as catalysts [36-38]. Also, these nanoparticles can be 77 
synthesized with ease and can fulfill relevant roles in other fields than the agricultural, like for 78 
diagnostic probes, drug development, and functionalization with a wide range of ligands such as 79 
antibodies or genetic material manipulation. Due to the previous, the demand of AuNPs is rapidly 80 
growing as a result of their outstanding properties and multiple applications [39]. The 81 
aforementioned multi-functionality represents AuNPs high scientific value and the reason why 82 
many groups are currently carrying research about them. 83 

Grimaldi et al. present a comparison regarding two production technologies; the conventional 84 
batch production, and an innovative milli-continuos flow. The latter provides attractive features, 85 
such as high controllability of product quality, simple operation, and high efficiency in the recovery 86 
of energy, as well as in the reduction of wastes. The research reported environmental impact and 87 
costs advantages from the adoption of a continuous-flow production, instead of the conventional 88 
method. In first place, human toxicity, ecotoxicity of water, and depletion of gold resources are 89 
reduced. Additionally, the strategy implies lower costs due to milder cleaning procedures, less 90 
complex operations, reduced use of hazardous substances, and waste generation. Therefore, the 91 
proposed approach recalls the importance of recycling natural products for the production of 92 
AuNPs to avoid the depletion of natural gold resources [40]. 93 
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2.2. Silver Nanoparticles  94 

 The synthesis AgNPs is a well-established field of work. In ancient times, silver nanoparticles 95 
were used as decorative pigments in crafts, staining glass, or ceramics. These materials have great 96 
potential and versatility as they are applicable in textiles, optoelectronics, catalysis, and 97 
environmental remediation processes as well. The latter, in particular, is due to inorganic silver’s 98 
antimicrobial character, recognized as a bactericidal agent since it is an antagonist of microorganism 99 
due to its propensity for dissolution of toxic silver ion [41,42]. AgNPs show great variability in their 100 
characteristics depending on their shape and size (Figure 1). Pal et al. have reported that the 101 
bactericidal power of these NPs increases as they decrease in size since they have a larger surface 102 
area [43].  103 

Silver has been used as a potent antimicrobial agent in different applications, having an 104 
important role in water treatment, chemical industries, food preservation, aquaculture ponds, and 105 
biomedical applications. Due to the current influence of nanotechnology, AgNPs are seen as an 106 
option towards improving agricultural productivity, through a production process that goes in 107 
harmony with the environment [44,45]. 108 

 109 

Figure 1. Silver nanoparticles: a) cubes, b) pyramids, and c)prisms. Adapted with permission 110 
from Marin, S. et al. Synthesis and characterization of silver nanoparticles and their application as an 111 

antibacterial agent. Int J Biosen Bioelectron 5:166-173. Copyright (2019) MedCrave [9]. 112 

3. Conventional methods for the synthesis of gold and silver nanoparticles 113 

There is an incredible demand for NPs because of their fascinating properties. Due to the 114 
previous, various chemical or physical methods, and more recently biological or green 115 
chemistry-based methods have been used to streamline the process. However, among the 116 
mentioned, chemical methods are the most commonly employed, and usually have two stages: 117 
nucleation and growth. In this type of method, synthesis generally requires certain components such 118 
as a metal precursor, a reducing agent, and a stabilizing agent [46,47].   119 

Physical parameters like size, size distribution, and shape can be achieved by controlling the 120 
nucleation stage, while nanoparticles growth can be controlled by adjusting experimental 121 
parameters such as the precursor used for reaction, concentration, pH, temperature, and reducing 122 
agents involved [48,49]. Cieśla et al. evaluated the effect of different synthesis conditions such as 123 
silver nitrate (AgNO3) concentration, temperature, and mechanical agitation on the properties of 124 
AgNPs. Different optical properties were observed according to NPs size and shape, as a result of 125 
the method variations tested. In this case, the mixing of reagents influenced size and shape, 126 
regardless of the process temperature. However, unmixed samples exhibited solely as spherical 127 
nanoparticles [50].  128 

Chemical reduction synthesis mechanisms of AuNPs and AgNPs have been extensively used 129 
through different methods such as the Turkevich, synthesis with sodium borohydride (NaBH4) with 130 
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or without citrate, seeding-growth, synthesis by ascorbic acid, and Brust-Schiffrin [51]. Nevertheless, 131 
a major concern arises due to the use of reagents such as NaBH4, sodium citrate, ascorbate, elemental 132 
hydrogen, Tollen reagent, N, N-dimethylformamide (DMF) and block copolymers of poly (ethylene 133 
glycol) for reduction of compounds. The mentioned substances can lead to toxic by-products and 134 
damage the environment. For this reason, the use of a green pathway for the design and synthesis of 135 
NPs is currently being explored, since in this approach reducing agents are provided by plants’ 136 
biomass [51,52]. 137 

Although chemical methods are the most widely used and well-reported for high-quality 138 
synthesis, these may lead to NPs with a narrow size distribution, and involve the use of hazardous 139 
chemical agents (e.g. toxic organic solvents), which limit NPs applications [53]. On the other hand, 140 
physical methods include simple one-step procedures and provide large-scale production in a short 141 
time, but it is common that the resulting NPs exhibit size, shape, and size distribution defects [54].  142 

4. Unconventional methods for the synthesis of gold and silver nanoparticles 143 

"Green methods" were created and introduced to achieve not only high social benefit but also, 144 
reducing the impact on the ecosystem. Thus, through their development and use, scientists are 145 
providing possible solutions to the issues encountered when using traditional synthesis methods, 146 
like the employment of environment-friendly solvents and reagents, as well as reducing energy 147 
consumption [55-57]. These methods consist in the use of non-toxic biomolecules such as DNA, 148 
proteins, enzymes, carbohydrates, and plant extracts for the synthesis of biocompatible metallic NPs 149 
by reducing metal ions in aqueous solutions [58,59]. 150 

In addition to the previous, these unconventional synthesis methods of AuNPs and AgNPs 151 
have the advantage of producing large quantities of NPs that are free from contamination and 152 
possess better-defined size and morphology than some of the obtained through conventional or 153 
physicochemical methods [60,61]. On the other hand, a disadvantage of these types of bioassays is 154 
the difficulty to establish adequate work conditions because biological raw material nature limits the 155 
set of conditions under which they can be used, and this can impact NPs formation. Therefore, it is 156 
necessary to provide well-defined specifications regarding temperature, pH, metallic solution 157 
composition, and the reaction time as well [60].  158 

AgNPs synthesis through an eco-friendly and sustainable process is an important aim for 159 
nanomaterial development [62,63]. Arreche et al. studied two commercial brands of yerba mate (Ilex 160 
paraguariensis) for the preparation of aqueous extracts to synthesize AgNPs at room temperature 161 
(Figure 2). The obtained NPs were spherical, hexagonal, and triangular, with an average particle size 162 
of 50 nm and surface plasmon peak at 460 nm. The antimicrobial activity was evaluated against E. 163 
coli and S. aureus. The minimum inhibitory concentrations required for E. coli were 7.66 and 17.66 164 
μg*ml−1 using the treatment brand 1 and brand 2, respectively. On the other hand, the values for S. 165 
aureus were 23.25 and 50.60 μg*ml−1 for the treatment brand 1 and brand 2, respectively. The study 166 
suggested that polyphenols present in yerba mate leaf extract take action as a reducing agent and 167 
stabilizer of the nanoparticles [64]. 168 
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 169 

Figure 2. Synthesis of AgNPs using extracts from yerba mate (Ilex paraguariensis) wastes. 170 
Reprinted with permission from Arreche, R. et al. Synthesis of Silver Nanoparticles Using Extracts 171 

from Yerba Mate (Ilex paraguariensis) Wastes. Waste and Biomass Valorization 73(6):1712-1720. 172 
Copyright (2018) Springer [64]. 173 

Sasidharan et al. used the pericarp of Myristica fragans fruit extract for the eco-friendly synthesis 174 
of AgNPs. In this approach, the aqueous fruit extract of the plant fulfilled reducing and stabilizing 175 
functions for the preparation, and the obtained AgNPs exhibited good catalytic and antibacterial 176 
activities [65]. In another approach, Alkhalaf et al. conducted a study to identify the effect of the 177 
green synthesis of AgNPs from a Nigella sativa plant extract, resulting in NPs that exhibit antioxidant 178 
activity [66]. Also, Sk et al. synthesized AuNPs and AgNPs using aqueous extract of leaves from 179 
Malva Verticillata. AuNPs were found to have outstanding catalytic activity toward the hydride 180 
transfer reduction of the aromatic nitro Schiff bases, while AgNPs displayed interesting antibacterial 181 
activity [67].  182 

5. Methods for obtaining plant extracts 183 

Extraction methods are used for the separation of plant metabolites. In the case of AuNPs and 184 
AgNPs synthesis, the main extraction methods employed are (a) solvent-based extraction, (b) 185 
microwave-assisted extraction, and (c) maceration extraction [68]. The ideal extraction method 186 
should be cost-effective, simple, less time-consuming, and carried out with ease in any laboratory 187 
[69].  188 

5.1. Solvent-based extraction 189 

This technique allows soluble components in the solid material to be integrated with a 190 
solvent-based extraction for mass transfer, which ratio decreases with the increase in concentration 191 
of the soluble compound in the solvent [70]. Recently, the application of green solvents has caught 192 
attention in different disciplines. These solvents are seen as a non-toxic, biocompatible, and 193 
biodegradable alternatives to the conventional ones. In addition to that, they are easier to prepare 194 
and are cost-effective. Some advances regarding green solvent technologies are deep eutectic 195 
solvents (DESs), natural deep eutectic solvents (NDESs), ionic liquids (ILs), surfactants, and 196 
bio-derived solvents [71,72]. 197 

5.2. Microwave-assisted extraction 198 
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    This method employs microwave energy for the partition of analytes from the sample into the 199 
solvent by rapid heating, which allows materials to reach the necessary level of energy associated 200 
with the dielectric susceptibility of both, solvent and plant raw material [68,73]. Through its 201 
implementation; extraction time and solvent volume are reduced compared to other methods [74]. 202 
The aforementioned explains why it is recognized as a green technology [75]. Aside from that, 203 
studies have shown improved recovery of analytes and reproducibility when executing the 204 
extraction by this method. However, it is necessary to take into consideration two important aspects. 205 
In first place, special concerns have to be foresee for preventing the thermal degradation of the 206 
samples, and second, research groups need to be aware that this method is limited to small-molecule 207 
phenolic compounds [76]. 208 

5.3. Maceration extraction  209 

     This process may be achieved by following three basic steps: (a) grinding the plant in small 210 
pieces, (b) adding the appropriate solvent in a closed vessel, which will determine the type of 211 
compound that is going to be extracted from the sample, and (c) filtration to separate the liquid 212 
phase [77,78]. Although this may be considered the easiest and simplest method, organic wastes can 213 
become an issue due to large amounts of solvents used, making it necessary to have a proper 214 
chemical waste management process [79]. 215 

6. Synthesis methods of gold and silver nanoparticles from plant extracts 216 

The use of plant extracts is strongly arising and is conceived as a feasible alternative for the 217 
synthesis of AuNPs and AgNPs because physicochemical approaches are being considered obsolete 218 
due to costly, and hazardous materials. Plant extracts can be presented in multiple forms, and are a 219 
rich source of polyphenols, flavonoids, sugars, enzymes, and/or proteins, which can also be used as 220 
reducing and stabilizing agents for the biosynthesis of metallic NPs. A great variety of plant extracts 221 
used for generating metallic NPs have been processed and applied in various fields [80-81]. In 222 
general, this method can represent a cost-effective, environmentally-friendly, simple, and suitable 223 
option for large-scale production processes [82].  224 

This method is quite diverse from others since extracts can be obtained from multiple parts of 225 
the plant or its derivate products that have demonstrated their aptitude to be considered a metal NP 226 
natural source, such as leaves, bark, stem, shoots, seeds, latex, secondary metabolites, roots, twigs, 227 
peels, fruits, seedlings, essential oils, and tissues. The extracts usually contain a large number of 228 
organic compounds in the non-volatile fraction of the active ingredients, which allows their 229 
obtention by several techniques such as extraction with polar and non-polar solvents (Figure 3) [83]. 230 

 231 

Figure 3. Synthesis of silver and gold nanoparticles using plant extracts. 232 
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 Many studies have produced AgNPs from different plant extracts, such as the ones from Citrus 233 
limetta, Luffa acutangula, Parkia speciosa, Melia azedarach, Artocarpus heterophylus, Azadirachta indica, 234 
Gomphrena globosa, and others [84-89]. On the other hand, different attempts have successfully 235 
synthesized AuNPs as well, through the application of a green process such as the ones reporting the 236 
use of Hygrophila spinosa, Caulerpa racemosa, Eclipta alba, Dunaliella salina, and Jasminum auriculatum 237 
plant extracts [90-94]. 238 

According to Jamklande et al., there are two kinds of synthesis methods depending on the 239 
starting material for NPs preparation. In first place, the top-bottom synthesis path is employed when 240 
raw material is at larger scales than the nano, allowing to break down its particles by grinding, 241 
lithographic techniques, sputtering, or thermal ablation. On the other hand, the bottom-up synthesis 242 
path includes the creation of nanoparticles from atoms that join in nucleation centers (Figure 4). In 243 
this case, the chemical reduction processes of the compounds are fundamental [95].  244 

 245 

Figure 4. Synthesis of metal NPs from Top-bottom and Bottom-up paths. Reprinted with permission 246 
from Zhang, T. et al. Synthesis of Silver Nanostructures by Multistep Methods. Sensors 247 

14(4):5860-5889. Copyright (2014) MDPI [52]. 248 

7. Nanoparticles characterization 249 

The term characterization refers to the study of composition, structure, and other NPs properties 250 
such as physical, chemical, electrical, and magnetic. Characterization is relevant in any study in 251 
order to guarantee reproducible synthesis of the NPs of interest. Many techniques are currently 252 
available for developing analytical methods for NPs characterization purposes since these possess 253 
unique physical, chemical, and mechanical properties from bulk solids and molecules [96-98].  254 

Nanomaterials have a large surface area to volume ratio, which differs greatly from the macroscopic 255 
materials [99,100]. The physicochemical properties such as size distribution, morphology, surface 256 
properties, chemical composition, kinetic behavior, stability, and interactions with other compounds 257 
exhibited by AuNPs, AgNPs, and NPs in general, depend on factors like surfactant additives, 258 
reactant concentrations, temperature, and solvent, as previously discussed. Therefore, the 259 
nanotechnology expansion requires to use analytical techniques based on spectroscopy, diffraction, 260 
thermal analysis, imaging, and others, for the study and characterization of nanoparticles, for which 261 
new combinations of techniques are being developed [100-102].  262 

7.1. Instrumental techniques for the characterization 263 

Research groups have extensively used spectroscopy to detect gold and silver NPs through the 264 
use of UV-vis methods, as these elements generate a specific signal while being reduced [103]. 265 
However, using one technique is not enough for a high-quality characterization of a sample, and 266 
usually, a degree of uncertainty is seen in each of them [102]. Therefore, the analysis and results from 267 
spectroscopy or any other must be supported by the combined use with other instrumental 268 
techniques (Figure 5) [104].  269 
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Usually, the verification of the intended synthesis product can be done by measuring the 270 
vibrational frequencies exerted by the chemical bonds between the functional groups in the sample, 271 
which is possible thanks to Fourier transform Infrared Spectroscopy (FT-IR) when that vibrational 272 
energy is in the range of 1013-1014 Hz (i.e. infrared radiation). In addition to that, nanoparticles size 273 
is studied using IR, near-infrared spectroscopy (NIR), and Fourier transform near-infrared 274 
spectroscopy in the diffuse reflectance mode (DR-FTNIR) [105-107]. 275 

Another useful technique, X-Ray Diffraction (XRD), allows assessing the physical properties of 276 
the NPs since the diffraction pattern can give a valuable information of their average size and 277 
structure distortions of the lattice, as well as orientation. Regarding the previous, the analysis 278 
provides signals to determine whether the sample presents crystalline structures or identify the 279 
periodicity of non-crystalline amorphous phases. The two-dimensional images obtained can be 280 
converted to three-dimensional when using Fourier transform (FT) [108,109]. 281 

In addition to that, the thermal analysis performed through Differential Scanning Calorimetry 282 
(DSC), and Thermogravimetry (TG) support XRD findings. In first place, DSC thermograms enable 283 
determining if NPs possess a crystalline structure based on the form of their melting peak. Also, 284 
according to the changes from that thermal event, it is possible to determine if they interact 285 
chemically or physically with other substances. Thus, this analysis provides relevant references for 286 
chemical incompatibilities, and physical transitions such as anomerizations, crystallizations, and 287 
amorphizations [110,111]. On the other hand, TG goes into detail about mass loss of NPs due to the 288 
volatilization of one or more components such as solvents under programmed conditions of 289 
temperature to understand events like absorption, desorption, adsorption, decomposition, 290 
oxidation, and reduction [112-114]. 291 

Finally, Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) 292 
have been widely used for NPs characterization, where both can show the size, aggregation degree, 293 
as well as dispersion within the sample [115]. SEM is a versatile technique able to provide 294 
information about the morphology, composition, and topography of NPs surface by generating 295 
signals due to interactions presented between the electron beam and the sample [116,117]. 296 
Nevertheless, TEM is considered to be the most popular technique for NPs characterization among 297 
the electron microscopy. When compared to SEM, TEM has greater capacity in providing good 298 
quality spatial resolution equal to the level of atomic dimensions, and also can perform better 299 
analytical measurements in terms of morphology, composition, and crystallographic information 300 
[117,118].  301 

Studies have shown that plant extracts from different species can produce the same shaped 302 
NPs. The aforementioned is well illustrative by four studies, which reported the synthesis of 303 
spherical AgNPs through different extracts like the ones from Tribulus Terrestris fruit, Alternanthera 304 
dentate leaves, Acorus calamus roots, and Boerhaavia diffusa species whole plant [119-122]. On the other 305 
hand, differences in shape are expected to happen when using different structures from the same 306 
plant for the extraction process. However, as reported by Rajakumar et al. the use of Eclipta prostrate 307 
leaves for AuNPs synthesis produced NPs with triangle, pentagon, and hexagon shapes [110]. 308 

Green synthesis of AgNPs was performed by Katta et al. using Tagetes erect plant extract. The 309 
XRD analysis confirmed the presence of pure silver phases with a face-centered cubic structure. The 310 
UV-vis spectroscopy analysis showed an absorption peak at 420 nm, and FTIR displayed relevant 311 
vibration peaks related to silver-ion binding process and yielded polyphenols at 3401 cm-1, the 312 
presence of aromatic compounds at 2940 cm-1, and the stretching peak of C-N bond at 1104 cm-1 due 313 
to the presence of plant-based amines. In addition to that, NPs morphology was assessed using SEM, 314 
where they were found to be in the range of 24-49 nm [123].   315 
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 316 

Figure 5. Characterization of silver nanoparticles a) XRD, b) FT-IR, c) DSC-TG, d) SEM, and e) TEM. 317 
Reprinted with permission from Zhang, X. et al. Silver Nanoparticles: Synthesis, Characterization, 318 
Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci 17(9):1534-1538. Copyright 319 

(2016) MDPI [124]. 320 

Furthermore, it has been found that characterization techniques may be affected by the 321 
properties of samples regarding the material type, composition, dimensions, and the environment 322 
where the study is conducted. For that reason, novel and sophisticated combinations of different 323 
techniques are being developed to characterize NPs, and overcome the identified limitations [125]. 324 

8. Gold and Silver nanoparticles applications in agroindustry:  325 

In general, the synthesis of NPs is of great interest because of their unique properties which can 326 
be incorporated into composite fibers, biosensor materials, cryogenic super-conducting materials, 327 
cosmetic products, and electronic components [126]. However, due to climate change, and the 328 
depletion of natural resources, the synthesis of AuNPs and AgNPs from plant extracts is a major 329 
topic for encouraging sustainable development. Because plants are the basis of this kind of green 330 
synthesis, the created AuNPs and AgNPs can be used in many agroindustry-related processes, from 331 
the application in the soil to the food chain [127-129].  332 

Applications of nanotechnology in the food and agriculture sectors were proclaimed in June 333 
2009 in a joint venture of the FAO and World Health Organization (WHO), with the inclusion of 334 
wide-ranging fields, such as nanostructured ingredients, nanosized biofortification, food packaging, 335 
nanocoating, and nanofiltration [130]. NPs may also act as “magic bullets”, containing nutrients or 336 
other substances such as beneficial genes, and organic substances, which are targeted to specific 337 
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plant areas or structures to enhance their productivity. Thus, NPs represent smart nano-delivery 338 
systems for agricultural administration, specifically on crop nutrition [131]. 339 

Regarding direct applications of AuNPs and AgNPs, it was found that many of the researches 340 
on this field were focused on seed germination, root elongation, and plant responses towards the 341 
presence of metal NPs, like cellular oxidative stress or cytotoxicity [127,132]. In addition to that, 342 
metal NPs also have functions like nano-fertilizers, and nano-pesticides [133]. However, there are 343 
indirect applications of these NPs in the areas of food packaging, based on the antimicrobial and 344 
antibacterial activity of the AuNPs, and AgNPs [131]. 345 

8.1. Antimicrobial and antibacterial properties. 346 

In the case of metal NPs, it is well known that they can be used as antioxidants, biosensors, and 347 
for heavy metal detection [134-136]. Moreover, their unique physicochemical properties such as the 348 
ability to bind biomolecules, large surface area to volume ratio, high surface reactivity, easy to 349 
synthesize and characterize, reduced cytotoxicity, and their visible light extension behavior allow 350 
their use as antimicrobial agents [137-140]. However, this property is primarily due to their 351 
ultra-small size and shape (250 times smaller than bacteria), which enables an electrostatic 352 
interaction between the gold or silver from the NPs, and the negative charge on the cell wall or 353 
surface of microorganisms, leading them towards cellular death [141,142]. In addition to that, the 354 
high concentrations of steroids, sapogenins, carbohydrates, and flavonoids act as reducing agents of 355 
ions, and as cover agents, which provide high stability to AuNPs and AgNPs [143].  356 

Many research papers in which AuNPs have shown promising antimicrobial activities have 357 
highlighted a majority spherical shape character of the NPs. Nevertheless, rod-shaped, triangular, 358 
hexagonal, and cubic NPs have also been found as part of the obtained mixture [144]. Thangamani et 359 
al. synthesized AuNPs using Simarouba glauca leaf extract. Size and shape of the NPs were sensitive 360 
to leaf broth concentration; particles tended to decrease in size with an increase in leaf broth 361 
concentration, while different morphologies were obtained such as a mixture of the prism and 362 
spherical like particles. Aside from that, they assessed the antimicrobial activity of the synthesized 363 
AuNPs by testing them against gram-positive and gram-negative organisms. The antimicrobial 364 
assay showed better results for Staphylococcus aureus, Streptococcus mutans, Bacillus subtilis, Escherichia 365 
coli, Proteus vulgaris, and Klebsiella pneumonia [145]. 366 

A study by Lediga et al. functionalized AgNPs with extracts of S. birrea and E. autumnalis, for 367 
which were found to exhibit remarkable antimicrobial properties against two gram-negative and 368 
two gram-positive bacterias. Both, the S. birrea and E. autumnalis AgNPs exhibited negligible or low 369 
toxicity [146]. In another approach, Montes de Oca et al. evaluated the impact of AgNPs usual 370 
concentrations in nature soils that are grown with Arabian Coffee in customary and organic 371 
operating systems. In this study, biomass, extracellular enzyme activities, and diversity of the soil 372 
microbial community were studied in a microcosm experiment as a function of time. After 7 days of 373 
incubation, the increase in the microbial biomass was found to be independent of AgNPs 374 
concentration [147]. In contrast, after 60 days, there was a decrease in gram-positive, and 375 
actinobacterial biomass in soils in all the evaluated AgNPs concentrations. The physicochemical 376 
properties of the soil and the enzymatic activities were not affected by AgNPs. Within the 377 
composition of the microbial community, only a few differences were observed in abundance 378 
relative to the phylum level and gender in the fungal community [147]. The results indicated that the 379 
environmental factors of AgNPs affect microbial biomass but had a low impact on microbial 380 
diversity, and may have a poor effect on soil biogeochemical cycles by extracellular enzyme 381 
activities [147,148]. 382 

9. NPs interactions with plants 383 
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9.1. Accumulation and harmfull effects of NPs in plants and crops 384 

Special attention should be paid to the interaction between NPs and plants (e.g. crops) when 385 
these materials are used within the agricultural field. Hashimoto et al. have found that accumulated 386 
AgNPs can translocate to roots and shoots of two terrestrial agro-crops; Vigna unguiculata and 387 
Triticum aestivum.  Recently, it has been demonstrated that AgNPs under aerobic soil conditions are 388 
able to maintain their intact nature (88%), while a transformation to Ag2S also occurs in the same 389 
extension [149].  390 

While it is not clear how metal NPs affect the environment, some studies reveal that plants 391 
overexposure to them may reveal pathways involved in the cytotoxicity. Proteomic studies on Oryza 392 
sativa (Asian rice) have increased protein precursors for oxidative stress tolerance, calcium 393 
regulation and signaling, apoptosis, and other kinds of damages [150]. This can be used for studying 394 
NPs limits in the environment. Also, high concentrations of silver can be overwhelming to the seed 395 
like for A.thaliana, which should not be exposed to AgNPs during its germination [151]. In contrast, 396 
there is no toxic effect on seed germination and root elongation of Cucurbita pepo (zucchini). This 397 
suggests that different mechanisms of action might occur across plant species concerning the effect 398 
on germination [152]. Furthermore, germination in Lolium perenne, Hordeum vulgare, and Linum 399 
usitatissimum showed to be affected at low concentrations of AgNPs but never fully inhibited [153].  400 

Kaveh et al. studied the model agro crop Arabidopsis thaliana and reported the 401 
phytoaccumulation of AgNPs [154]. Another approach developed by Taylor et al. described M. Sativa 402 
L. (alfalfa) tendency to accumulate metal NPs of different sizes [155]. Also, gold is taken up in A. 403 
thaliana predominantly in an ionic form. It has been reported that AuNPs exposure results in the 404 
upregulation of plant genes causing downregulation of specific-metal transporters to reduce gold 405 
uptake [155]. 406 

Courtois et al. published an important study of the impact of silver species introduced into the 407 
soil via sewage sludge. As mentioned before, AgNPs are incorporated into many conventional and 408 
novel products due to their special physicochemical and antimicrobial properties. However, the 409 
discharge of these products into wastewater causes an accumulation of AgNPs and derivates such as 410 
Ag2S in sewage sludge. The major concern is related to land application of sewage sludge for 411 
agricultural purposes since soils receive a great source of contamination for plants and crops. Soil 412 
exposure to metal NPs may lead to changes in microbial biomass, and can also affect plant growth 413 
causing physiological, biochemical, and molecular effects on them. Nonetheless, much is still 414 
unknown about the ecotoxicology of silver species, where several doubts are focused on the 415 
possibility of transfer along the trophic chain via accumulation in plants, and for that, research to 416 
evaluate the long-term impact of AgNPs on plants is ongoing [156]. 417 

9.2. NPs in soils 418 

Needless to say, the growing use of AgNPs due to their recognized antimicrobial activity has 419 
led to their accumulation in soil ecosystems [157,158]. Although their environmental impact on the 420 
soil microbial community is a concern that is still under consideration, several authors have 421 
concluded that the toxic effects on microbial communities are highly dependent on the AgNPs 422 
concentration in the soil [159-163]. However, most studies have evaluated AgNPs at higher levels 423 
than actually occur in nature [164-167]. 424 

Meier et al. presented the concern that anthropogenic activities can disrupt soil ecosystems, 425 
resulting in the reduction of its microbial health. In order to evaluate the previous, they exposed 426 
freshly collected sandy loam soil to solutions ranging from 0-2000 mg/kg of AgNPs. After that, they 427 
expanded traditional soil microbial analysis with genomics-based tests through the measure of 428 
alterations in community taxonomic structure and function using 16S-rDNA profiling and 429 
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metatranscriptomics. The research group found that AgNPs affected bacterial taxonomic structure, 430 
as well as genes involved in heavy metal resistance, and also, their presence induced some toxicity 431 
response pathways to become highly upregulated [168].  432 

Another study by Li et al. described the impact of AgNPs on the soil. Ag2S is more likely to be 433 
the form in which silver is retained in soils. They examined Ag2S retention from 11 natural different 434 
soils and discovered that more than 99% of the NPs were retained irrespective of the soil properties. 435 
Since the retention of Ag2S in soils is conceived as a critical factor for their toxicity and availability to 436 
sustain life (e.g. plants), the results obtained by this group can be a good approach for explaining the 437 
differences in phytoavailability exhibited by soils compared to what is established in the literature 438 
for liquid media [169]. 439 

10. Conclusions 440 

     Green chemistry is an innovative and growing resource in the search for more environmentally 441 
friendly processes. Using plant extracts for the synthesis of metal NPs is a recently growing area of 442 
interest due to its benefit in comparison to the traditional physicochemical methods. AuNPs and 443 
AgNPs generated by green synthesis have potential applications in agriculture and agroindustry, 444 
especially as antimicrobial agents of certain microorganisms for which their efficacy has been 445 
scientifically proven. Although recent studies suggest that environmental concentrations of AuNPs 446 
and AgNPs affect microbial biomass with low impact in their diversity, further research needs to be 447 
addressed in order to determine the effects they could produce to the soil, plants, and the 448 
environment in general due to long-term exposure. 449 

 450 
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