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Abstract: innate and adaptive immune responses lead to wound healing by regulating a complex 

series of events promoting cellular cross-talk. An inflammatory response is presented with its 

characteristic clinical symptoms: heat, pain, redness, and swelling. Some smart thermo-responsive 

polymers like chitosan can be used to create biocompatible and biodegradable scaffolds with 3D 

architectures similar to human structures, allowing their efficient and safe use as tissue engineering 

and drug delivery systems in chronic wounds. Locally heated tumors above polymer lower critical 

solution temperature can induce its conversion into a hydrophobic form, enhancing drug release 

until the thermal stimulus is gone, where a lower release is due to the swelling of the material.  

This paper integrates the relevant reported contributions of bioengineered scaffolds for 

thermo-responsive drug delivery in wound healing. Therefore, we present a comprehensive review 

that aims to demonstrate the capacity of these systems to provide spatially and temporally 

controlled release strategies for one or more drugs used in wound healing. In this sense, the novel 

manufacturing techniques of 3D-printing and electrospinning are explored for the tuning of their 

physicochemical properties to adjust therapies according to the patient’s convenience, as well as 

reduce drug toxicity and side effects. 

Keywords: drug delivery; immune response; inflammation; critical solution temperature; scaffolds; 

smart polymers; tissue engineering; thermo-responsive; wound healing.   

 

 

1. Introduction 

Scaffolds are biocompatible and biodegradable support structures that reproduce an 

extracellular matrix (ECM) environment, where tissue is grown outside the body to mimic a 

biological process or to replace a damaged body’s tissue [1,2]. Regarding that, tissue engineering 

aims to employ these structures for different biomedical applications that restore, maintain, and 

improve damaged tissue function. This multidisciplinary field analyses the requirements of the 

biomaterials needed to produce the scaffolds, such as morphology, and mechanical and surface 

properties [3,4].  

Wound healing is of great interest for tissue engineering. It involves hemostasis, 

inflammation, proliferation, and remodeling, where each stage comprises different necessary 
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biochemical mediators for a successful process [5]. Scaffolds represent outstanding structures for 

wound healing due to their capacity for tissue regeneration and cell growth. Different novel 

manufacturing techniques are widely been employed such as 3D bioprinting and electrospinning 

[6,7]. In addition, they can perform as a drug delivery system when composed of smart polymers 

that respond to certain stimuli (e.g., pH, temperature, magnetic and electric fields) [8–10].  

Thermo-responsive polymers are very useful for scaffold development due to their 

outstanding performance under a determined change in temperature (e.g., locally heated tumors in 

inflammation) [11,12]. This change can induce a phase transformation in the polymer, causing the 

release of a loaded anti-inflammatory, antimicrobial, and/or wound care drug. Heskins et al. were 

one of the first scientists to work with a thermo-responsive polymer that is poly(N-isopropyl 

acrylamide) (PNIPAAm) [13]. Currently, polymer therapeutics is a major interest in the 

nanomedicine field for the development of novel drug delivery systems [14–18].  

Here, we present a comprehensive and integrative update of thermo-responsive polymers 

used for the development of bioengineered scaffolds with drug delivery applications in wound 

healing. The work is based on the main findings of 158 papers published between 2010 and 2020. The 

literature search was conducted in Science Direct, Pub Med, and Scopus databases. Therefore, this 

review aims to demonstrate the capacity of these systems to provide spatially and temporally 

controlled drug release in wound healing. In addition, the novel manufacturing techniques of 

3D-printing and electrospinning are explored for their creation and tuning of their physicochemical 

properties. 

2. Immune response in wounds 

The immune system possesses a critical role in discriminating harmful pathogens from the 

body’s healthy tissues. Although it must generate an adequate response to eliminate any strange 

object it also has to avoid self-tissue damaging to allow a proper wound healing process [19]. In 

order to accomplish that, immunity is based on two components: the innate and adaptive responses. 

The first one takes immediate action upon the detection of an invader, while the second one requires 

the activation of the innate [20,21]. However, there is evidence that one response can be influenced 

by its counterpart. The previous has been explained by some cells exhibiting functional properties of 

both, such as dendritic cells, gamma delta (+) T lymphocytes, and Langerhans cells [22,23]. 

Moreover, the immune response in wound healing is a complex process to return the system 

to homeostasis; involving cellular and biochemical mediators in response to a tissue injury caused 

by trauma, microbes, or foreign materials. Consequently, a series of events including coagulation, 

inflammation, epithelization, proliferation, and remodeling take place leading to wound closure.  

[24–28]. However, this section aims to provide an overview of the topic, so the attention will be paid 

to inflammation since it provides the micro-environmental conditions that are necessary for a 

thermo-responsive drug delivery of wound healing substances through bioengineered scaffolds. 

The inflammatory process is an early required phase for wound healing, characterized by 

five typical symptoms: redness, swelling, heat, pain, and loss of tissue function [29]. Endothelial cells 

express cell adhesion molecules that promote the binding of circulating leucoytes. Moreover, 
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neutrophils are the first inflammatory cells arriving at the injury site, responding to chemokines and 

being chemo-attracted by C5a and C3a complement activation fragments [30,31]. In addition, 

platelet aggregation and macrophages degranulation trigger the release of other proinflammatory 

cytokines such as tumor necrosis factor-α, interleukin-1 (IL-1), IL-6, and growth factors such as the 

transforming growth factor-beta (TGF-β). As fewer proinflammatory substances are released and 

more proregenerative mediators are produced, inflammation is reduced and damaged tissues are 

repaired [32,33].  

3. Thermo-responsive smart polymers  

In general, water-soluble smart polymers change their physicochemical properties upon the 

influence of an external stimulus, and some of them are responsive to multiple stimuli. This 

modification is related to their arrangement, solubility, or the hydrophilic-hydrophobic balance 

[34–36]. Regarding the thermo-responsive polymers, these have been thoroughly studied and exhibit 

a volume phase transition at a critical solution temperature (i.e., the temperature where exists a 

balance in the competition established by hydrophilic and hydrophobic chains), usually referred to 

as cloud point (Tcp), which is responsible for the changes in the solvation-state [37–39]. Usually, 

topical applications and injectable biodegradable scaffolds made of this type of polymers make use 

of body temperature to cause a change in the physical properties of the system [40].  

According to their origin, this type of polymer can be classified as natural, synthetic, and 

hybrid. Natural polymers such as chitosan, gelatin, collagen, and cellulose have been widely used 

for biomedical applications as ECM due to their great biocompatibility and bioactivity. However, 

their main limitations are related to batch variability and unsuitable physicochemical properties for 

certain manufacturing processes [41–44].  

On the other hand, synthetic polymers such as PNIPAAm, poly(lactic acid) (PLA), 

poly(ε-caprolactone) (PCL), poly(N-vinyl caprolactam) (PNVCL), polyethyleneglicol (PEG) and 

polyethylene oxide (PEO) provide greater tunability of their properties and outstanding mechanical 

behavior that allows using them for different materials processing techniques. Nevertheless, these 

polymers may not present the same biodegradable performance as the natural, as well as exhibit 

lower biocompatibility [45,46]. Remarkably, the limitations exhibited by natural and synthetic 

polymers can be overcome by their blending, obtaining a hybrid polymer [47–49].   

Phase transition thermodynamics and critical solution temperature 

Polymer solubility is a complex process that depends on their structure and molecular 

weight, as well as on the viscosity of the system [50]. Based on the Gibbs-Helmholtz equation (∆G =

 ∆H − T∆S), changes in Gibbs free energy of the system (ΔG) to negative values represent the 

condition under which polymers are soluble [51]. This happens when the change in entropy (ΔS) 

increases due to the diffusion of solvent molecules through the polymer, where polymer-solvent 

interactions break intermolecular polymeric bonds [52]. An adequate solvent can expand polymer 

molecules, thus decreasing ΔG, while a poor one causes them to collapse. However, the 

Flory-Huggins solution theory should be addressed in explaining the temperature’s influence on 

polymer-solvent, polymer-polymer, and solvent-solvent interactions [53–55]. 
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Thermo-responsive polymers possess a unique property of solid-gel transition above a 

certain temperature, and some of them suffer this phase transition near the physiological human 

body temperature (i.e., normothermia). Also, they can be modified to exhibit that change at the 

desired temperature [53,56,57]. These polymers are classified according to their critical solution 

temperature in lower critical solution temperature (LCST) or an upper critical solution temperature 

(UCST) [58,59]. Figure 1 shows a phase diagram where LCST and UCST are represented as solid 

curves with a single-phase region in between. When the system exhibits a positive ΔG at a certain 

temperature, the polymer will not be miscible under those conditions, and two different phases will 

co-exist [60,61]. 

 

Figure 1. Lower critical solution temperature (LCST) and upper critical solution temperature (UCST) phase 

transition behaviors of thermo-responsive polymers in solution. Reprinted with permission from Sugeno, K. et 

al. UCST Type Phase Boundary and Accelerated Crystallization in PTT/PET Blends. Polymers 12(11). Copyright 

(2020) MDPI [61]. 

In the first place, polymers exhibiting LCST (usually close to normothermia) are completely 

miscible in aqueous systems below that parameter since ΔG is negative [62]. The previous is due to 

the negative change in enthalpy (ΔH) for the dissolution process caused by water molecules 

surrounding the hydrophilic part of the polymer [63]. In addition, the formation of a structured 

water molecule arrangement around the hydrophobic part of the polymer provides a negative ΔS 

[62]. However, above the LCST these substances experience a reversible phase transition from a 

hydrophilic configuration to a dehydrated or hydrophobic state. Heating induces that transition 

under an entropy-driven process caused by the loss of ordered water molecule arrangement around 

the hydrophobic polymer chain [64,65].  

Phase separation in LCST polymers is influenced by the interruption in polymer-water 

hydrogen bonding and the increment in hydrophobic interactions in the polymer chain due to 

further increase in temperature. When the positive overall ΔS overcomes the negative ΔH, it gives 

ΔG a positive value that results in chain collapse and a decrease of solubility [66–68]. These materials 

are usually referred to as negative temperature-sensitive polymers or PNIPAAm, and great interest 

has been paid in their coil-to-globule conformational transition in aqueous systems [64].   
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On the other hand, solubility and physical changes of some polymers are due to UCST. 

Above that parameter, ΔS and ΔH decrease with the increase in temperature, showing the opposite 

behavior to that shown by LCST polymers, and thus these materials remain miscible in solution 

[69,70]. Nevertheless, a phase separation governed by the enthalpy of the system occurs at 

temperatures below the UCST due to the balance between intra- and intermolecular forces, as well as 

solvation changes [71]. These materials are also called positive temperature-sensitive polymers and 

are based on a combination of acrylamide (AAm) and acrylic acid (AAc) [72]. 

Moreover, some systems can exhibit both behaviors as shown in figure 1, where an 

hourglass-shaped phase diagram shows the overlap of each set of curves. When that happens, phase 

separation is so well defined that the intermediate region is immiscible. In these cases, the 

temperature range between LCST and UCST tend to be sensitive to the polymer molecular weight 

and changes in pressure [73–75]. Although thermo-responsive systems under an aqueous 

environment are of great interest for biomedical applications it is not usual to see that behavior 

when using them for that purpose. Furthermore, they are not restricted from using other solvents for 

additional applications [76,77]. 

4. Bioengineered thermo-responsive scaffolds  

Scaffolds provide templates for tissue regeneration and physical support for cell growth 

[78]. These can be made of artificial or natural thermo-responsive polymers, which can condition the 

different biomedical applications due to their effect on the functional attributes [47,79,80]. This type 

of smart polymers has been widely used as a scaffold in non-invasive methods for different tissues, 

such as skin and heart [81,82]. The previous is attributed to their injectability and self-healing 

properties but also their porosity has been highlighted as an outstanding property, which provides 

enough space for cell migration and tissue vascularization [83]. 

Moreover, when used for the creation of bioengineered scaffolds for wound healing, these 

polymers must provide a 3D architecture according to the structural heterogeneity of the host tissue 

environment [84,85]. The previous allows improving the mechanical and cellular activity (e.g., 

adhesion and proliferation) required by these structures [86–88]. In addition, scaffold design needs 

to consider several features such as cell-tissue interaction, vascularization, scaffold degradation, and 

loading with drugs, growth factors, cells, and antibacterial material. Therefore, preformulation and 

rational designs of scaffolds for drug delivery systems or biomedical devices are crucial for 

developing a functional, biocompatible, and non-immunogenic product of quality that accelerates 

local tissue healing [89,90].   

4.1. Novel manufacturing techniques 

Scaffolds’ relevance lies in their design as bioactive systems than mere cell or drug carriers. 

Some fabrication techniques provide surface modification, while others take advantage of their 

physiological thermo-responsive behavior for creating structures with particular and unique 

geometries. The ability to design a system that can respond to an external stimulus, controlling their 

degradation, drug release and healing capacity yields special interest in the development of 

scaffolds [91,92]. A brief overview of some novel techniques is presented below. 
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4.1.1. 3D-printing 

This technique is probably the most adequate for controlling and modifying the internal 

microarchitecture of scaffolds. However, not all thermo-responsive polymers are easily employed 

for 3D-printing. Some natural polymers need to be modified or blended with other polymers in 

order to adquire the rheological and mechanical specifications [93,94]. Biomaterials need to fulfill the 

requirements of printability, mechanical strength, and degradation behavior to be subjected to this 

tissue engineering technique. Regarding that, Printability determines the capacity of a construct to 

imitate the 3D structure of biological tissues [95,96]. The extrusion method is widely employed for 

thermo-responsive polymers allowing larger constructs than other alternatives [97].  

However, other methods such as inkjet printing have been used by Fischetti et al. where 

chitosan was blended with gelatin to form a polyelectrolyte complex to improve printability for the 

fabrication of scaffolds for anisotropic tissues (e.g., skin, skeletal muscle). The printing temperature 

was set below the LCST of the polymer blend. Tripolyphosphate was used as a crosslinker for the 

creation of the scaffold, which greatly conditioned its mechanical properties. The scaffold showed 

cytocompatibility to L929 cells and its stability was related to the content of gelatin [98].   

Furthermore, synthetic materials are also employed, offering a better resolution for the 

bioprinting of scaffolds due to the ease of tunability. Seyednejad et al. developed a 3D scaffold base 

on hydroxyl-functionalized polyester (poly 

(hydroxymethylglycolide-co-ε-caprolactone) (PHMGCL). The structure showed enhanced 

hydrophilicity, higher degradation rate, and improved cell support than a PCL 3D scaffold, 

representing a great template for tissue engineering [99]. 

4.1.2. Electrospinning 

This polymer processing technology allows obtaining nanofibers with high 

surface-to-volume ratio, highly porous structures, and diverse morphologies that can be easily 

controlled through different methods such as melt, emulsion, coaxial, multi-jet, side-by-side, and 

co-electrospinning [100,101]. However, not all polymers can be employed for this technique since 

they need to be soluble in a certain solvent [102,103].   

Electrospun nanofibers are of great interest to the biomedical and bioengineering industry 

due to their outstanding properties in terms of biocompatibility, biodegradability, and high 

drug-loading capacity to perform as drug delivery systems [104]. Regarding that, these nanofibers 

can be employed for the fabrication of scaffolds for wound healing that provide either an immediate 

or controlled release of the active pharmaceutical ingredient (API). Therefore, electrospun 

nanofibers composed of thermo-responsive polymers offer a novel solution to current drug delivery 

inconveniences for wound healing due to their safety profile [105–107].   

Meng et al. fabricated a poly(D,L-lactide-co-glycolide) (PLGA)/chitosan nanofibrous scaffold 

by electrospinning. The nanofibers exhibited biocompatibility and biodegradability, as well as a 

higher drug release with increasing concentrations of chitosan [108]. In another approach, Ji et al. 

fabricated a PCL-based nanofibrous scaffold and loaded the model protein bovine serum albumin 

(BSA) through coaxial and blend electrospinning. The coaxial electrospun nanofibers showed 
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uniform morphology with a core-shell structure, while the blend nanofibers possessed defects on its 

surface and heterogeneous protein distribution. Regarding their release profile, the coaxial scaffold 

demonstrated a sustained release and provided more protection to the BSA. Therefore, this work 

demonstrated how different methods can tune up scaffold’s properties according to the 

manufacturing technique [109]. 

4.2. Biocompatibility and biodegradability 

New generations of thermo-responsive polymers offer the opportunity to synthesize them 

controlling their architecture and microstructure, thus providing great advances in tissue 

engineering and drug delivery [110,111]. Their use in the development of bioengineered scaffolds 

must provide cell support and protection during the healing process, as well as facilitate the 

deposition method [112]. However, these biomaterials properties (e.g., size, shape, surface area, 

roughness, chemical composition) influence the host response, causing variations in the intensity 

and duration of the inflammatory and wound healing processes. The aforementioned defines the 

biocompatibility of the polymers and scaffolds [113].  

Biocompatibility is the ability of an introduced material into a physiological environment to 

perform as intended without inducing an inappropriate micro-and macroscopically host response 

[114]. Implanted scaffolds can activate the immune response, which as explained earlier in this 

review, involves a series of proinflammatory biochemical molecules that trigger the inflammatory 

process [115]. Precisely, inflammation is a common indicator for determining the host response to a 

biomaterial, and need to be follow up closely to avoid tissue damage [116,117]. In addition, the 

presence of massive fibroblast proliferation with associated collagen deposition represents a 

biocompatibility issue causing extensive scar tissue and fibrous encapsulation [118]. 

Polymers need to fulfill certain criteria in order to be used for tissue reparation and wound 

healing. In general, these biomaterials must be water-soluble, non-toxic, non-immunogenic, and safe 

during the whole process including the excretion (i.e., the size below the renal threshold) [119,120]. 

When used for drug delivery applications they have to work as drug carriers, reducing the 

degradation of the API. Furthermore, they should provide a biodegradable character to the scaffolds 

since these are not intended as permanent within the body [121]. However, their degradation can 

generate particles that may stimulate an inflammatory response or produce toxic effects. In this 

sense, the degradation mechanism, kinetics, and its intermediate products have to be taken into 

consideration, as well as the scaffold´s porosity that is directly linked to the degradation process 

[121–123]. 

Cho et al. evaluated cell biocompatibility in a hydrophilic PCL/polyvinylpyrrolidone 

(PVP)-b-PCL electrospun nanofiber-based scaffold. The authors highlighted the importance of the 

ECM hydrophilicity as a factor affecting cell adhesion in tissue engineering, and more specifically in 

PCL. Therefore, they enhanced its surface hydrophilicity through electrospinning with the 

biocompatible PVP-b-PCL block copolymer. It was reported an increase in the hydrophilic character 

in the PCL/PVP-b-PCL electrospun nanofibers as the concentration of PVP-b-PCL block copolymer 

was raised. In addition, the scaffolds exhibited no cytotoxicity, enhanced cell adhesion, and 

improved viability of primary fibroblasts than showed by the initial PCL scaffolds [124]. 
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In another electrospinning approach, Ji et al. evaluated the effect of nano-apatitic particles 

(nAp) on the biocompatibility and biodegradability behavior of 3:1 polymeric electrospun 

PLGA/PCL-based scaffolds. The research group prepared nanofibers with 0-30 wt% of nAp that 

were subcutaneously implanted in rats after their creation and following a 3-week pre-degraded 

status in order to evaluate in vivo tissue response. The study reported a delayed polymer 

degradation dependent on nAp concentration. In terms of biocompatibility, nAp significantly 

improved the tissue response during 4-week implantation, thus their results are considered as 

effective for controlling the in vivo adverse reaction of PLGA materials [125]. 

A study conducted by Xu et al. presented a novel method for 3D-printing of nanocellulose 

hydrogel scaffolds. The printed scaffolds from a 1 wt% nanocellulose hydrogel supported fibroblasts 

proliferation as well as exhibited suitable biocompatibility and biodegradability behaviors [126]. In 

another study, Intini et al. developed a 3D-printed chitosan-based scaffold for wound healing in 

diabetes. They evaluated the biocompatibility and toxicity toward human fibroblasts and 

keratinocytes, reporting significant in vitro cell growth. In addition, the in vivo evaluation of the 

3D-printed scaffolds in diabetic rats showed an improvement in the restored tissue compared to a 

commercial patch [127].  

4.3. Drug delivery applications in wound healing 

Scaffolds’ behavior and mechanism are highly influenced by the physicochemical properties 

of the thermo-responsive polymers used for their development but also due to the regulation 

systems of the biological host. These natural feedbacks (e.g., inflammation, hyperthermia) aims to 

stabilize any condition that contrasts with the physiological balance [89]. As a result, scaffolds and 

their constituent biomaterials make use of these biological responses to provide novel tools for drug 

delivery systems that can be applied to the wound healing process [128]. These systems provide 

spatially and temporally controlled drug release strategies for one or more API that can accelerate 

tissue healing, cicatrization process, and regulate the inflammatory response [129,130]. 

Scaffolds made of synthetic, natural, and modified biopolymers are being loaded with small 

drugs or biomacromolecules (e.g., proteins, poly(nucleic acids)) [131,132]. For instance, polymers 

exhibiting the non-linear LCST behavior are the ones employed for wound healing drug delivery 

[133]. As mentioned before, these systems suffer solubility alterations upon an increase in 

temperature, usually above the normothermia (37 °C), where a reversible transition from a 

hydrophilic to a hydrophobic state takes place. Drug release is reduced below their LCST, mainly 

caused by surface desorption, swelling, and degradation of the polymer matrix. For high-swelling 

hydrophilic forms, the release depends on the diffusion through the polymer matrix, while for 

low-swelling polymers the release is subjected to the swelling process itself [134,135].  

Moreover, a locally heated tumor presented during inflammation, either caused by tissue 

damage or as a response upon the introduction of a biomaterial allows enhancing drug release due 

to polymer chains shrinking [136]. In addition, thermo-responsive polymers can be used as 

injectable biomaterials in the form of a hydrogel, which allow the in situ formation of scaffolds, 

minimizing the employment of invasive methods, and representing a novel and advanced drug 

delivery system especially for subcutaneous application [137–140]. In this technique, the 
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thermo-responsive polymer is mixed with the API at room temperature for subsequent injection into 

the body. After that, the body’s temperature increase above polymer LCST induces a phase 

transition that forms a physical gel, favoring the release of the drug from the scaffold [141–143].   

Andrgie et al. developed an injectable heparin-conjugated PNIPAAm in situ gel-forming 

polymer with encapsulated ibuprofen to address pain and excessive inflammation during wound 

healing. In vitro analysis showed a reduction of pro-inflammatory mediators due to the released 

drug. In addition, the hydrogel was applied to wound on the back of mice, revealing that the 

formulation improved healing compared to a placebo group, thus presenting this in situ 

forming-scaffold as a promising therapy approach [144]. 

 As presented in table 1, there are several drug delivery applications of thermo-responsive 

scaffolds for wound healing such as pain, inflammation, microbial infections, and prevention of 

large scar tissue [145,146]. 

Table 1. Thermo-responsive scaffolds for drug delivery in wound healing. 

 

Polymer system Delivered Drug Application Release time Ref 

Gelatin Ibuprofen 

Inflammation 

and bone 

regeneration 

100 h [147] 

PLGA Ibuprofen Inflammation 30 h [148] 

Poly(N-vinylcaprolactam-co-methacrylic 

acid) 
Ketoprofen Inflammation 50 h [149] 

Poly(di(ethylene glycol) methyl ether 

methacrylate), Ethyl cellulose  
Ketoprofen Inflammation 100 h (80%) [150] 

Sodium alginate Celecoxib Hyperthermia - [151] 

Chitosan, PCL 
Ferulic acid, 

resveratrol 

Inflammation, 

pro-angiogenic 

120 h (55% of 

ferulic acid 

and 48% of 

resveratrol) 

[152] 

PVA, chitosan 
Tetracycline 

HCl 

Bacterial 

infection 
4 h (80%) [153] 

Chitosan, PEG 
Ciprofloxacin 

HCl 

Bacterial 

infection 
20 h (30%) [154] 

Chitosan, alginate Alpha-tocoferol 

Skin injuries, 

oxidative 

process 

14 days 

(77%) [155] 

Eudragit 
Gentamicin 

sulphate 

Bacterial 

infection in 

diabetic ulcer 

12 h (90% at 

acid pH) [156] 

PLGA Clorhexidine 
Infection 

treatment 
50 days [157] 

PCLA, PVA, chitosan Metformin HCl 

Epidural 

adhesion, 

fibrosis 

15 days [158] 

Chronic wounds and ulcers caused by different diseases such as diabetes demand advanced 

therapies for treating them since chronic inflammation and poor tissue regeneration are 

complications that can lead to amputation [159,160]. Lee et al. developed core-shell nanofibrous 
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bioactive insulin-loaded PLGA scaffolds through coaxial electrospinning for sustained release of the 

synthetic hormone in diabetic rats. The scaffolds exhibited a release of the molecule during four 

weeks, which promoted diabetic wound healing [161]. 

Karri et al. explored the application of curcumin in the management of diabetic wound 

healing. In this study, they developed a novel nanohybrid scaffold that consisted firstly in the 

incorporation of curcumin in chitosan nanoparticles to a subsequent impregnation into a collagen 

scaffold, which provides better tissue generation. The study suggests that the synergistic 

combination of curcumin as an anti-inflammatory drug, and chitosan and collagen as a drug carrier 

and wound healing scaffold have an outstanding wound healing capacity [162]. 

Garakani et al. synthesized PLGA microparticles loaded with dexamethasone, which was 

dispersed in different hydrogels of chitosan/PVP. The obtained scaffolds possessed an amorphous 

structure that facilitated the dissolution of the microparticles, as well as a high swelling ratio and 

controlled biodegradability rate. The study reported a slower release upon the addition of PVP. 

However, the designed scaffolds released 75-85% of the drug after 30 days, while the loaded 

microparticles fully release the complete dose after 22 days. Therefore, this formulation can be 

considered as a sustained release thermo-responsive drug delivery alternative for wound healing in 

a 30 day-course [163]. 

Also, as reported by Hao et al. thermo-responsive scaffolds have been employed for tissue 

regeneration and controlling the inflammation caused by periodontal diseases. In this study, a 

bio-sensitive PLGA/mesoporous silica nanocarriers core-shell porous microsphere encapsulated 

PLA spongy nanofibrous micro scaffold was developed for local injection delivering of celecoxib 

into periodontal tissue. The drug release provided significant control of the inflammation, while the 

scaffold contributed to the formation of new tissue, resulting in an effective approach for treating 

periodontal disease [164].  

The study reported by Zehra et al. presents a concern for scar-free healing and pain 

management in wound healing. To address this, the research group developed a 3D porous 

biomimetic scaffold with a novel combination of polymers; chitosan and sodium alginate. 

Additionally, the scaffold was loaded with ibuprofen. The development resulted suitable for tissue 

engineering applications due to its nano- and microporous structures. Also, the scaffold showed a 

sustained drug release in vitro, which is considered ideal for the sake of minimal inflammation and 

pain management [165]. 

Furthermore, wounds are vulnerable to suffering from bacterial infection, which can extend 

the inflammatory process and increase its intensity [166,167]. Several research groups have worked 

on different strategies that combine natural antimicrobial and anti-inflammatory approaches for 

wound healing [168,169]. Regarding this, García et al. developed an electrospun PCL-based 

anti-inflammatory scaffold loaded with thymol (THY) and tyrosol (TYR) essential oils. The study 

aimed to reduce inflammation and minimize the risk of infected wounds, as well as reducing 

antimicrobial resistance due to the indiscriminate use of antibiotics. Furthermore, the authors 

reported that PCL-THY exhibited a more efficient down-regulation of pro-inflammatory genes 

compared to the PCL-TYR and PCL-THY-TYR systems [170]. 
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In another approach, Mahmoud and Salama employed the freeze-drying technique for the 

preparation of norfloxacin-loaded scaffolds for wound treating. The scaffolds were composed of 

collagen with chitosan HCl or with chitosan low molecular weight. Although the selected chitosan 

conditioned the mechanical strength, both provided an extended biodegradability and showed 

almost a 100% release of the antibiotic drug after 24 h. In addition, the in vivo study in Albino rats 

revealed after 28 days of wound dressing that tissue regeneration time was faster compared to 

non-treated wounds [171]. 

Moreover, burn infections are also a major concern in wound healing therapies since they 

are the most traumatic and physically disabling injuries, leading to high morbidity and mortality 

rates [172]. In this sense, Lan et al. designed an antibacterial silk fibroin scaffold with gelatin 

microspheres impregnated with gentamycin sulfate, which were further embedded in the silk 

fibroin matrix. After 21 days the scaffold not only served as a tissue regeneration template when 

evaluated in a rat full-thickness burn infection model but provided a sustained release of the API 

and exhibited stronger antimicrobial activity against Escherichia coli, Staphylococcus aureus, and 

Pseudomonas aeruginosa. Therefore, this can be considered as a promising approach for wound 

healing and burn infection treatment in severely burned patients [173]. 

5. Conclusions 

Thermo-responsive polymers are currently one of the most important materials in 

nanotechnological, tissue engineering and biomedical fields for the development of scaffolds. Their 

amphiphilic nature and the ease for tunning of their physicochemical properties through novel 

techniques, enable the delivery of different drugs and biomolecules for wound healing. Moreover, 

their self-healing properties make them suitable for the fabrication of scaffolds that provide faster 

tissue regeneration in the affected area. Special emphasis should be paid to the process parameters 

under which an optimum design allows obtaining a high-quality, biocompatible and biodegrable 

drug delivery system according to the wound needs.   
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