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Abstract: Genetic improvement programs for conifer forest species face the challenge of propagating
elite individuals with superior characteristics in the present landscape of climate change; the problem
is focused on the fact that when these individuals have shown the desirable traits, they have changed
phase and therefore have lost the ability to be propagated by traditional methods. Based on our
previous works on Pinus spp. regeneration of adult trees through organogenesis and trying to improve
the protocol in Pinus radiata, our objective was to analyze the influence of collection dates and different
6-benzyladenine (BA) concentrations in the first phase of shoot induction, as well as the effect of
different light types on the success of root induction. Moreover, we were interested in studying the
effect of the abovementioned physico-chemical factors on the amino acid and carbohydrate content
in the shoots developed in vitro. Reinvigorated shoots were obtained in both BA concentrations (22
or 44 µM), although the highest BA concentration showed the best results in terms of shoot induction
(explants forming shoots (46%) and number of shoots per explant (1.95 ± 0.52)) when using initial
explants collected in the first week of February. The percentage of explants forming shoots (EFS)
was genotype-dependent. Explants from genotype A induced with the highest BA concentration
showed the highest EFS (91%). With respect to the light treatment applied, significant differences in
root induction (20%) and in the number of roots per explant (4.62 ± 0.65) were observed in shoots
cultured under white FL. Finally, significant differences in different phases of the rooting process were
detected in the amounts of fructose, glucose and sucrose and in the content of threonine and tyrosine.

Keywords: LEDs; micropropagation; radiata pine; rooting; shoot induction

1. Introduction

Conifers are an important gymnosperm group, distributed worldwide, and they
form extensive, circumboreal forests across North America and Eurasia [1]. Conifers are
particularly important since they supply over 50% of the world’s timber harvest and present
technical and economic advantages for wood-based industries. In forestry plantations,
conifers are preferred over angiosperms as they produce a much faster economic yield with
more predictable shapes and sizes of timber [2].

Among all conifers, the family Pinaceae far outweighs others in economic importance
and the genera Pinus ranks first. Radiata pine (Pinus radiata D. Don), native to the Central
Coast of California and Mexico, is the most planted pine species, and its plantations have
been extended throughout Australia, Chile, New Zealand, South Africa and Northern
Spain [3,4]. However, in recent years, many countries have reported problems regarding
the commercial viability of plantations due to effects provoked by fungus and other stresses
derived from climate change [4,5]. Brown spot needle blight caused by Lecanosticta acicola
and Dothistroma needle blight caused by the fungi Dothistroma septosporum and D. pini are
forest diseases that affect this species [6,7]. For this reason, great efforts are being carried
out to develop efficient methods to propagate selected trees with tolerance to several biotic
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and abiotic stresses. In this sense, in vitro methods provide tools that can be used for the
clonal propagation of Pinus species, as well as for the creation of backup collections as an
alternative to the in situ conservation of species [8–11].

In in vitro culture, the physico-chemical environment is very important and sometimes
determines the success of the morphogenic process. The type and concentration of plant
growth regulators, vitamins, basal media, solidifying agents, pH, etc., are crucial to obtain
a highly efficient in vitro regeneration procedure [12,13]. In this sense, cytokinins added to
the culture medium directly affect organogenesis, having a direct response to the induction
of axillary shoot buds due to their effect on the endogenous phytohormone balance [12,14].

Light also affects plant morphogenesis, and it may not only induce plant development
but also induce photo-inhibition when leaves are exposed to more light than they can
utilize [15]. Usually, fluorescent tubes (FL) are used for plant micropropagation in growth
chambers, with irradiances between 25 and 150 mmol m−2 s−1 for a 16 h photoperiod [16].
However, this illumination method has some drawbacks, such as its short lifespan (10,000 h)
and the fact that it produces heat, which leads to the need for an extensive cooling system
and high maintenance costs [15,17]. Light-emitting diodes (LEDs) are being used currently
as an alternative light source for controlled-environment horticulture technology [18]. The
high efficiency in the energy conversion of LEDs reduces the heat emissions and thereby
saves energy. LEDs are also environmentally safer than FL tubes and are made of recyclable
material [19].

When optimizing a tissue culture protocol, the source of explant, the explant type and
its developmental stage are also key factors [20]. In the specific case of cells from adult
explants, they are less prone to initiating dedifferentiation and reprogramming processes
than juvenile explant cells [21]. Moreover, the effect of the initial explant collection date on
the morphogenic and embryogenic success has been demonstrated [22].

The development of a successful tissue culture protocol to achieve in vitro shoots from
Pinus adult trees requires not only the optimization of adventitious shoot initiation and
elongation but also the improvement of the rooting process. There are many chemical
factors involved in the success of the process; the carbohydrate source has been described
as one of them, involved in the growth of adventitious roots in shoots [23]. Traditionally,
sucrose is commonly used in tissue culture because it is readily assimilated by plants, but,
in some cases, high concentrations of this compound could have negative effects in the root
elongation phase [20,23].

In the case of Pinus, the Neiker-BRTA research group established successful protocols
for adult pine organogenesis in Pinus pinaster Ait., Pinus sylvestris L., Pinus pinea L., Pinus
radiata and Pinus halepensis Mill. [9–11,24,25]. These kinds of procedures showed low
success and were sometimes extremely dependent on the genotype. For this reason, and
trying to increase the yield of this in vitro organogenic tool, our main goal was to study the
effects of different physico-chemical factors on the organogenesis process of Pinus radiata
buds from adult trees. Moreover, we focused our study on the involvement of the assayed
environmental conditions in the content of amino acids and carbohydrates during the
rooting phase.

2. Materials and Methods
2.1. Plant Material

Vegetative shoot buds (1–7 cm length) (Figure 1a) were collected every 15 days from
13 January to the last week of January 2020, and every 8 days from the first to the fourth
week of February 2020, comprising a total of 6 collection dates. Eight 13-year-old adult trees
(A, B, C, D, E, F, G and J), located in Neiker, Arkaute (Spain; 42◦51′08.5′′ N, 2◦37′37.1′′ W),
and one 9-year-old juvenile somatic tree (N) (Spain; 42◦51′5.51′′ N, 2◦37′19.43′′ W) were
chosen to carry out the experiment. After cutting and collecting buds from the trees, they
were wrapped in moist paper to prevent dehydration and stored in polyethylene bags at
4 ◦C for a maximum of 3 days. The vegetative buds were disinfected as follows: all explants
were washed with commercial detergent, rinsed under running water for 10 min, immersed
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in ethanol 96% for 2 min and then washed three times with sterile distilled water. After
this, explants were disinfected in 1 mL L−1 silver nanoparticle solution (Argovit®, Vector
Vita LLC, Novosibirsk, Russia) (1.2% (w/w) of metallic silver stabilized with 18.8% (w/w)
of polyvinylpyrrolidone (PVP) suspended in water (80% w/w)) for 15 min and then rinsed
three times with sterile distilled water [26]. Finally, the bud scales were removed, and the
explants were cut transversely with a surgical scalpel blade into 0.5–1.0-cm-thick slices
(Figure 1b) under sterile conditions in a laminar-flow unit. The slices were directly used to
study the effect of 6-benzyladenine (BA, Duchefa Biochemie, Haarlem, Netherlands) on the
induction medium.
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Figure 1. Organogenic process in apical shoot buds from Pinus radiata D. Don adult trees: (a) apical 
shoot buds, bar = 1 cm; (b) shoot bud slices in culture, bar = 1 cm; (c) shoot bud slice after induction 
with 22 μM 6-benzyladenine (BA), bar = 1 cm; (d) shoots in elongation medium, bar = 1 cm; (e) 
rooted shoots, bar = 1 cm; (f) acclimatized shoots, bar = 3 cm. 
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(LP) medium [27], as modified by Aitken-Christie et al. [28], supplemented with 3% (w/v) 
sucrose and solidified with 8 gL−1 Difco Agar®. The effect of two concentrations of BA was 
evaluated (22 and 44 μM). The pH of the medium was adjusted to 5.8 before autoclaving 
(121 °C, 20 min). Four to five Petri dishes per BA concentration and genotype were laid 
on the growth chamber at a temperature of 21 ± 1 °C, under a 16 h photoperiod, with 120 
μmol m−2 s−1 of light intensity provided by cool white fluorescent tubes (TLD 58 W/33; 
Philips, France). 
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subcultured into baby food jars (150 mL) containing 25 mL of EM (Figure 1d). The shoots 
were subcultivated every six weeks to the same medium. The light intensity, photoperiod 
and temperature of the growth chamber were the same as described above. 

When shoots were 1.0–1.5 cm in length in the original bud slice, they were separated 
and cultivated individually in fresh EM (Figure 1d). The explants that showed new axil-
lary shoot formation were cultivated into fresh EM, comprising a total of 6 subcultures, 
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again with IM treatment to promote axillary bud development (re-induction). 
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Figure 1. Organogenic process in apical shoot buds from Pinus radiata D. Don adult trees: (a) apical
shoot buds, bar = 1 cm; (b) shoot bud slices in culture, bar = 1 cm; (c) shoot bud slice after induction
with 22 µM 6-benzyladenine (BA), bar = 1 cm; (d) shoots in elongation medium, bar = 1 cm; (e) rooted
shoots, bar = 1 cm; (f) acclimatized shoots, bar = 3 cm.
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2.2. Organogenic Process

Four to five slices were cultivated vertically on Petri dishes (90 × 15 mm) containing
20 mL of bud induction medium (IM) (Figure 1b). IM consisted of Quoirin and Lepoivre
(LP) medium [27], as modified by Aitken-Christie et al. [28], supplemented with 3% (w/v)
sucrose and solidified with 8 gL−1 Difco Agar®. The effect of two concentrations of BA was
evaluated (22 and 44 µM). The pH of the medium was adjusted to 5.8 before autoclaving
(121 ◦C, 20 min). Four to five Petri dishes per BA concentration and genotype were laid
on the growth chamber at a temperature of 21 ± 1 ◦C, under a 16 h photoperiod, with
120 µmol m−2 s−1 of light intensity provided by cool white fluorescent tubes (TLD 58 W/33;
Philips, France).

2.2.1. Shoot Growth and Elongation

As soon as bud induction was observed (between 7 and 9 weeks in IM) (Figure 1c),
explants were transferred to Petri dishes with elongation medium (EM). EM consisted of
hormone-free LP medium supplemented with 2 gL−1 activated charcoal and 3% (w/v)
sucrose and solidified with 8.5 gL−1 Difco Agar®. The pH of the medium was adjusted to
5.8. After 35–50 days in culture (when elongating needle fascicles were evident), explants
were subcultured into baby food jars (150 mL) containing 25 mL of EM (Figure 1d). The
shoots were subcultivated every six weeks to the same medium. The light intensity,
photoperiod and temperature of the growth chamber were the same as described above.

When shoots were 1.0–1.5 cm in length in the original bud slice, they were separated
and cultivated individually in fresh EM (Figure 1d). The explants that showed new axillary
shoot formation were cultivated into fresh EM, comprising a total of 6 subcultures, and the
remaining explants showing secondary needles were separated and cultivated again with
IM treatment to promote axillary bud development (re-induction).

2.2.2. Root Induction and Acclimatization of Rooted Plants

After the elongation phase, shoots of at least 2.0–2.5 cm length were used for root
induction. The explants were cultivated in Ecoboxes (Eco2box/green filter: a polypropylene
vessel with a “breathing” hermetic cover, Duchefa®) containing 100 mL of root induction
medium (RIM), which consisted of LP medium supplemented with a mixture of 5 µM
1-Naphthaleneacetic acid (NAA) and 10 µM indole-3-butyric acid (IBA), 8 gL−1 Difco Agar®

and (A) 3% (w/v) sucrose or (B) 1.5% (w/v) sucrose. Eight shoots per genotype and BA
concentration were cultivated for each sucrose concentration. The pH of the culture media
was adjusted to 5.8 before autoclaving. The shoots were placed in dim light at 21 ± 1 ◦C for
8 days, followed by four weeks under a 16 h photoperiod. Two different light treatments
were tested: (A) white light, 120 µmol m−2 s−1 of light intensity provided by cool white
fluorescent tubes (TLD 58 W/33; Philips, France); and (B) red light, 67 µmol m−2 s−1 of
light intensity provided by adjustable LEDs (RB4K Grow LEDs, GureLED-Meetthings,
Vitoria-Gasteiz, Spain).

After four weeks of culture in RIM, explants were cultured in Ecoboxes containing
100 mL of root expression medium (REM), which consisted of LP medium supplemented
with 2 gL−1 activated charcoal, 3% (w/v) sucrose and 8.5 gL−1 Difco Agar®, for six weeks.
Then, explants with visible roots were transferred to wet peat moss (Pindstrup, Aarhus,
Denmark): vermiculite (8:2, v/v) and acclimatized in the greenhouse under controlled
conditions at 21 ± 1 ◦C, decreasing the humidity progressively over one month from 95
to 80%.

2.3. Metabolite Extraction and Soluble Sugar and Amino Acid Quantification

Metabolite extractions from explants collected after four weeks of culture in RIM
treatments and after six weeks cultured in REM medium were performed following the
protocol described by Valledor et al. [29]. Five to eight explants were taken from each con-
dition (previous BA treatment, light type and sucrose content in the medium); no particular
selection of the material was made. Each explant was considered as a biological replicate.
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Explants were ground in liquid nitrogen and 100 mg of the resulting fine powder was trans-
ferred to 2 mL microcentrifuge tubes containing 800 µL cold metabolite extraction buffer
(methanol:chloroform:water, 2.5:1:0.5, v:v:v). Then, tubes were centrifuged at 20,000× g
6 min at 4 ◦C and the supernatants were transferred to new tubes containing 800 µL of
phase separation mix (chloroform:water, 1:1, v:v). After centrifugation at 10,000× g for
5 min at room temperature, the upper aqueous phases containing polar metabolites were
saved in new 1.5 mL tubes. Aliquots of 200 mL were then obtained from these tubes and
completely dried on a Speedvac to remove the remaining methanol.

Finally, the samples were resuspended in 100 µL ultra-pure water and soluble sugars
and amino acids were quantified by High-Performance Liquid Chromatography (HPLC)
(Agilent 1260 Infinity II, Agilent Technologies, Santa Clara, CA, USA). Soluble sugars,
including sugar alcohol (fructose, galactose glucose, mannitol and sucrose), were separated
using a Hi-Plex Ca column (7.7 mm × 300 mm, 8 µm) and detected using a refractive
index detector at a flow rate of 0.15 mL min−1 pure water at 80 ◦C for 30 min, as de-
scribed by Castander-Olarieta et al. [30]. In the case of amino acids, a Poroshell 120 column
(4.6 mm × 100 mm, 2.7 µm, Agilent Technologies, Santa Clara, CA, USA) was used, cou-
pled to a fluorescence detector. The samples were injected into the column at a flow rate of
1.5 mL min−1 at 40 ◦C for 18 min with a discontinuous gradient. Solvent A was a mixture of
10 mM Na2HPO4 (Scharlau Chemie, Barcelona, Spain) and 10 mM Na2B4O7 (pH 8.2) (Schar-
lau Chemie, Barcelona, Spain) and solvent B was acetonitrile: methanol:water (45:45:10,
v:v:v) (Scharlau Chemie, Barcelona, Spain, HPLC-grade). The gradient program was the
following: min 0–13.40, solvent A 98% and solvent B 2%, min 13.40–13.50, solvent A 43%
and solvent B 57%, min 13.50–15.80, solvent B 100%, and min 15.80–18, solvent A 98% and
solvent B 2%. Amino acids were estimated after pre-column derivatization by mixing 1 µL
sample with 2.5 µL borate buffer (Agilent Technologies, Santa Clara, CA, USA), 32 µL dilu-
ent (100 mL solvent A and 0.4 mL concentrated H3PO4) (PanReac AppliChem, Barcelona,
Spain, pure pharma-grade) and 0.5 µL o-phthaldialdehyde (OPA) (Agilent Technologies,
Santa Clara, CA, USA). In the specific case of amino acids hydroxyproline and proline,
samples were mixed with 0.5 µL of 9-fluorenyl-methylchloroformate protecting group
(FMOC) (Agilent Technologies, Santa Clara, CA, USA) instead of OPA. Detection was
performed by analyzing fluorescence with excitation at 260 nm and emission at 450 nm for
OPA derivatives and emission at 325 nm for FMOC derivatives.

In the case of amino acids, concentrations were determined from internal calibration
curves constructed with the corresponding commercial standards (Agilent Technologies,
Santa Clara, CA, USA). Carbohydrates such as fructose, galactose, mannitol and sucrose
(Merck, Darmstadt, Germany) and glucose (Duchefa Biochemie, Haarlem, The Netherlands)
were determined from internal calibration curves constructed with the corresponding
commercial standards. Results were conveniently adjusted considering the concentration
step after methanol removal (2 times), and the results were expressed as µmol g FW–1. In
the case of certain amino acids, samples were re-injected after 1/32 dilution to avoid signal
saturation, and the resulting concentrations were conveniently adjusted.

2.4. Data Collection and Statistical Analysis

Two to four Petri dishes per genotype (nine genotypes) and four to five bud slices per
Petri dish were cultured for each BA concentration and collection date. Contamination,
survival and the percentage of explants forming shoots (EFS) (%) at each collection date
were measured after two months of culture. When the axillary shoots were isolated
and cultured individually in elongation medium, the EFS (%) and the mean number of
shoots per explant (NS/E) were calculated with respect to the non-contaminated explants.
A logistic regression model was used to analyze the collection date, genotype and BA
concentration’s effects on the EFS (%). Tukey’s post hoc test (α = 0.05) was used for multiple
comparisons. Data on the NS/E were analyzed by analysis of variance (ANOVA). When
necessary, multiple comparisons were made using Duncan’s post hoc test (α = 0.05).
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The root induction percentage (RI) (%), the mean number of roots per explant (NR/E)
and the length of the longest root (LLR) (cm) were recorded after six weeks of culture in
REM medium. A completely randomized design was carried out using eight stems per BA
and sucrose concentrations and light treatments.

To assess the effect of the cytokinin and sucrose concentration and light treatments’
effects on the RI (%), a logistic regression was performed. Data on NR/E were x2 trans-
formed to meet homoscedasticity and were analyzed by ANOVA. Data on LLR (cm) were
subjected to ANOVA. When necessary, multiple comparisons were made using Duncan’s
post hoc test (α = 0.05). The acclimatization percentage was calculated after four weeks
under ex vitro conditions.

Data on free amino acid and carbohydrate content after four weeks of culture in RIM
medium and after six weeks cultured in REM medium were analyzed. The confirmation of
the homogeneity of variances and normality of the data was performed, and, when neces-
sary, they were log(x) and

√
x transformed. Data on free amino acids and carbohydrates

were subjected to ANOVA, and, when necessary, multiple comparisons were made using
Duncan’s post hoc test (α = 0.05). The data were analyzed using R Core Team software®

(version 4.2.1, Vienna, Austria).

3. Results
3.1. Organogenic Process

Genotype A showed the highest survival of the explants, independently of the collec-
tion date (72%). On the contrary, the lowest survival was observed in genotype J (43%). The
highest survival values of the explants were observed on the first collection date (second
week of January). In the same way, the highest contamination rates were recorded in
samples collected in the third and fourth weeks of February (44% and 43%, respectively),
and the lowest were found from January to the second week of February (between 17
and 34%).

The collection date had a significant effect on the EFS (%) (Figure 2, Supplementary
Table S1). A significantly higher EFS (%) was obtained during the first week of February
than during the third and fourth weeks of February (4%). Shoots induced in the second and
third weeks of January and the second week of February displayed intermediate values (29
to 34%).
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Figure 2. Explants forming shoots (%) shown in buds of Pinus radiata D. Don adult trees collected
on different dates and cultured in Quoirin and Lepoivre (LP) medium [27], modified according
to Aitken-Christie et al. [28]. Data are presented as mean values ± S.E. Different letters indicate
significant differences by Tukey’s post hoc test (p < 0.05).
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Reinvigorated shoots were obtained after culture media were supplemented with both
BA concentrations (22 and 44 µM). Regarding EFS (%), BA concentrations alone did not
provoke any statistically significant differences in the EFS (%) (Supplementary Table S2),
but the genotype and the interaction between genotype and BA concentration showed
significant differences (Figure 3). A significantly higher EFS (%) was obtained in buds of
genotype A induced with 44 µM BA than in the rest of the genotypes and BA concentrations
tested. Buds of genotype N cultured with 44 µM BA showed a significantly lower EFS (%)
than buds from genotypes A, F, G and J and genotypes E and J cultured at 22 and 44 µM
BA, respectively (between 33 and 45%, Figure 3).
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Figure 3. Explants forming shoots (%) shown in buds of different genotypes of Pinus radiata D. Don
cultured in Quoirin and Lepoivre (LP) medium [27], modified according to Aitken-Christie et al. [28],
supplemented with 6-benzyladenine (BA at 22 and 44 µM). Data are presented as mean values ± S.E.
Different letters indicate significant differences by Tukey’s post hoc test (p < 0.05).

No statistically significant differences were found in NS/E when the effect of the BA
concentration in the culture media during the induction phase was analyzed (Supplemen-
tary Table S3). The NS/E ranged from 1.66 ± 0.40 to 1.95 ± 0.52 in explants induced with
22 and 44 µM BA, respectively.

Rooting Induction and Acclimatization of Rooted Plants

The different BA concentrations (22 and 44 µM) used in the shoot induction phase did
not have a statistically significant effect on RI (18% and 14%), on NR/E (4.50 and 3.56) or
on LLR (1.83 cm and 1.60 cm), respectively (Supplementary Tables S4 and S5).

A significantly higher RI (%) was observed in shoots cultured under white FL when
compared with shoots growing under red LEDs (Figure 4a). In the same way, NR/E
was significantly higher in shoots cultured under white FL than in those under red LEDs
(Figure 4b). Light treatments did not provoke any statistically significant differences in the
LLR. Shoots growing under red LEDs showed the longest length (2.22 cm) (Supplementary
Tables S4 and S6).



Forests 2022, 13, 1455 8 of 22

Forests 2022, 13, 1455 8 of 23 
 

 

Figure 3. Explants forming shoots (%) shown in buds of different genotypes of Pinus radiata D. Don 
cultured in Quoirin and Lepoivre (LP) medium [27], modified according to Aitken-Christie et al. 
[28], supplemented with 6-benzyladenine (BA at 22 and 44 μM). Data are presented as mean values 
± S.E. Different letters indicate significant differences by Tukey’s post hoc test (p < 0.05). 

No statistically significant differences were found in NS/E when the effect of the BA 
concentration in the culture media during the induction phase was analyzed (Supplemen-
tary Table S3). The NS/E ranged from 1.66 ± 0.40 to 1.95 ± 0.52 in explants induced with 22 
and 44 μM BA, respectively. 

Rooting Induction and Acclimatization of Rooted Plants 
The different BA concentrations (22 and 44 μM) used in the shoot induction phase 

did not have a statistically significant effect on RI (18% and 14%), on NR/E (4.50 and 3.56) 
or on LLR (1.83 cm and 1.60 cm), respectively (Supplementary Tables S4 and S5). 

A significantly higher RI (%) was observed in shoots cultured under white FL when 
compared with shoots growing under red LEDs (Figure 4a). In the same way, NR/E was 
significantly higher in shoots cultured under white FL than in those under red LEDs (Fig-
ure 4b). Light treatments did not provoke any statistically significant differences in the 
LLR. Shoots growing under red LEDs showed the longest length (2.22 cm) (Supplemen-
tary Tables S4 and S6). 

 
 

(a) (b) 

Figure 4. Effect of light treatments (white fluorescent (F) and red LEDs (R)) on root induction (%) 
(a) and number of roots per explant (b) of Pinus radiata D. Don shoots cultured in Quoirin and Le-
poivre (LP) medium [27], modified according to Aitken-Christie et al. [28]. Data are presented as 
mean values ± S.E. Different letters indicate significant differences by Tukey’s post hoc test (a) and 
by Duncan’s post hoc test (b) (p < 0.05). 

For the LLR, a significant effect of the interaction between BA and light treatment 
(Figure 5a) and between BA and sucrose concentration (Figure 5b) was observed. Explants 
induced with 44 μM BA and exposed to red LEDs displayed higher values compared with 
explants induced at the lowest BA concentration and exposed to the same light conditions 
(Figure 5a). On the contrary, explants cultured in the presence of 22 μM BA and exposed 
to white FL displayed significantly higher values on LLR compared with explants induced 
at the highest BA concentration and exposed to the same light conditions (Figure 5a). Ad-
ditionally, explants induced in the presence of 44 μM BA and cultured in medium sup-
plemented with 1.5% sucrose during root induction showed significantly higher values 

0

10

20

30

40

50

60

70

80

90

100

F R

R
oo

t i
nd

uc
tio

n 
(%

)

Light treatments

b

a

0.0

1.0

2.0

3.0

4.0

5.0

6.0

F R

N
um

be
r o

f r
oo

ts
 p

er
 e

xp
la

nt

Light treatments

b

a

Figure 4. Effect of light treatments (white fluorescent (F) and red LEDs (R)) on root induction (%)
(a) and number of roots per explant (b) of Pinus radiata D. Don shoots cultured in Quoirin and
Lepoivre (LP) medium [27], modified according to Aitken-Christie et al. [28]. Data are presented as
mean values ± S.E. Different letters indicate significant differences by Tukey’s post hoc test (a) and
by Duncan’s post hoc test (b) (p < 0.05).

For the LLR, a significant effect of the interaction between BA and light treatment
(Figure 5a) and between BA and sucrose concentration (Figure 5b) was observed. Explants
induced with 44 µM BA and exposed to red LEDs displayed higher values compared with
explants induced at the lowest BA concentration and exposed to the same light conditions
(Figure 5a). On the contrary, explants cultured in the presence of 22 µM BA and exposed to
white FL displayed significantly higher values on LLR compared with explants induced
at the highest BA concentration and exposed to the same light conditions (Figure 5a).
Additionally, explants induced in the presence of 44 µM BA and cultured in medium
supplemented with 1.5% sucrose during root induction showed significantly higher values
than shoots induced at the same BA concentration followed by a medium supplemented
with 3.0% sucrose (Figure 5b). When a culture medium containing 22 µM BA was used for
shoot induction, regardless of the sucrose concentration evaluated, intermediate values of
LLR were obtained (Figure 5b).

Regarding the sucrose concentrations, shoots cultured in medium with 3% sucrose
showed a significantly higher RI value (22%) than those cultured in 1.5% sucrose (9%).
No statistically significant differences in NR/E (3.73 and 4.10) and LLR values (2.01 and
1.55 cm) were observed in shoots cultured in the presence of 1.5 and 3% sucrose, respectively
(Supplementary Tables S5 and S6).

Additionally, the interaction between BA concentration and light treatment and be-
tween BA and sucrose concentrations assayed throughout shoot induction did not show
significant differences in RI (%) and NR/E (Supplementary Tables S4 and S5). In the same
way, no statistically significant differences were observed in the interaction between light
treatment and sucrose concentration evaluated during the shoot induction phase in RI (%),
NR/E and LLR (Supplementary Table S6).

Shoots induced in the presence of 22 µM BA, rooted in medium supplemented with
3% sucrose and exposed to white FL from genotypes A, E and K developed in vitro roots
(Figure 1e). In all genotypes, in the bases of shoots, a large and profuse callus was observed
(Figure 1e). Acclimatized shoots were successfully obtained only from genotype K (33.33%)
(Figure 1f).
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Figure 5. Effect of 6-benzyladenine (BA) concentration (22 and 44 µM), light treatment (white
fluorescent (F) and red LEDs (R)) (a) and BA concentration (22 and 44 µM) and sucrose concentration
(1.5% and 3.0% (w/v) (b) on length of the longest root (cm) of Pinus radiata D. Don shoots cultured in
Quoirin and Lepoivre (LP) medium [27] modified according to Aitken-Christie et al. [28]. Data are
presented as mean values ± S.E. Different letters indicate significant differences by Duncan’s post
hoc test (p < 0.05).

3.2. Metabolite Analysis

BA concentrations and light treatments, as well as the interaction between both vari-
ables, did not show significant differences for the concentration of carbohydrates in shoots
analyzed after four weeks under RIM treatment (Supplementary Tables S7–S9). However,
explants cultured in media with the highest BA concentration presented a lower sucrose
concentration than explants cultured in media with 22 µM BA (Table 1). Additionally,
the levels of all carbohydrates analyzed were lower in explants cultured under red LEDs,
except for the galactose concentration (Table 1).

Table 1. Effect of 6-benzyladenine (BA) concentration (22 and 44 µM) and light treatment (white
fluorescent or red LEDs) on carbohydrate content of Pinus radiata D. Don shoots cultured in rooting
medium (Quoirin and Lepoivre (LP) medium [27], modified according to Aitken-Christie et al. [28],
supplemented with a mixture of 5 µM 1-Naphthaleneacetic acid (NAA) and 10 µM indole-3-butyric
acid (IBA)).

Carbohydrates
(µmol g FW−1)

Retention Time
(min)

BA Concentration (µM) Light Treatment

22 44 White Fluorescent Red LEDs

Fructose 18.076 21.36 ± 6.28 22.71 ± 2.90 24.91 ± 5.21 19.20 ± 2.59
Galactose 16.096 4.82 ± 2.18 2.75 ± 0.28 2.96 ± 0.37 4.25 ± 1.82
Glucose 14.653 13.66 ± 4.37 15.50 ± 2.17 16.70 ± 3.57 12.66 ± 2.19

Mannitol 22.911 7.59 ± 0.45 7.04 ± 0.44 7.36 ± 0.36 7.15 ± 0.55
Sucrose 12.640 12.29 ± 3.82 5.67 ± 0.83 10.73 ± 3.30 5.70 ± 0.99

Data are presented as mean values ± S.E.

Regarding the effect of the sucrose concentration on the carbohydrate levels of shoots
analyzed after root induction treatment, no significant differences were found in galactose
and mannitol concentrations (Supplementary Tables S8 and S9). Galactose displayed values
from 2.41 to 4.85 µmol g FW−1 and mannitol from 6.69 to 7.87 µmol g FW−1 in media
supplemented with 1.5 and 3% sucrose, respectively. In the case of fructose, glucose and
sucrose, significantly higher concentrations were obtained in shoots cultured in the presence
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of the highest sucrose concentration when compared with the results at the lowest sucrose
concentration (Figure 6a–c). The interaction between BA and light treatment, the interaction
between BA and sucrose concentration and the interaction between light treatment and
sucrose concentration did not show statistically significant differences (Supplementary
Tables S7–S9).
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Figure 6. Effect of sucrose concentration (1.5% and 3.0% (w/v)) on fructose (a), glucose (b) and
sucrose (c) concentration of Pinus radiata D. Don shoots cultured in rooting medium (Quoirin and
Lepoivre (LP) medium [27], modified according to Aitken-Christie et al. [28], supplemented with a
mixture of 5 µM 1−Naphthaleneacetic acid (NAA) and 10 µM indole−3−butyric acid (IBA)). Data
are presented as mean values ± S.E. Different letters indicate significant differences by Duncan’s post
hoc test (p < 0.05).

At the end of the rooting phase, no statistically significant differences were found
for any of the carbohydrates analyzed in shoots during the root expression phase in
relation to BA, light treatments, sucrose concentrations or the interactions among them
(Supplementary Tables S10–S12). The highest glucose content (26.44 µmol g FW−1) was
found when shoots were cultured in the presence of the lowest BA concentration during
the induction phase (Table 2). Additionally, shoots cultured under white FL exhibited an
increase in fructose, glucose and sucrose levels compared with those cultured under red
LEDs (Table 2). The fructose, glucose and sucrose levels decreased in shoots cultured during
the induction phase in medium supplemented with the highest sucrose concentration. The
galactose concentration in shoots after the rooting phase was the lowest of all the sugars
analyzed, independently of the chemical characteristics of the culture media.
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Table 2. Effect of 6-Benzyladenine (BA) (22 and 44 µM) and sucrose concentration (1.5 and 3.0%
(w/v)) and light treatment (white fluorescent or red LEDs) on carbohydrate content of Pinus ra-
diata D. Don shoots cultured in Quoirin and Lepoivre (LP) medium [27], modified according to
Aitken-Christie et al. [28], supplemented with 2 gL−1 activated charcoal after the rooting phase.

Carbohydrates
(µmol g FW−1)

Retention Time
(min)

BA Concentration (µM) Light Treatment Sucrose Concentration (w/v)

22 44 White
Fluorescent Red LEDs 1.5% 3.0%

Fructose 18.076 25.74 ± 7.18 22.87 ± 1.97 25.98 ± 4.79 21.57 ± 2.36 27.17 ± 4.44 19.58 ± 1.95
Galactose 16.096 3.12 ± 0.59 3.87 ± 0.59 4.00 ± 0.47 3.19 ± 0.75 3.42 ± 0.66 3.86 ± 0.53
Glucose 14.653 26.44 ±15.01 14.41 ± 1.55 24.22 ± 9.88 12.46 ± 1.37 22.50 9.11 13.51±2.28

Mannitol 22.911 5.38 ± 0.75 5.85 ± 0.36 5.66 ± 0.56 5.71 ± 0.41 5.83 ± 0.56 5.49 ± 0.33
Sucrose 12.640 10.10 ± 4.24 5.29 ± 0.79 8.63 ± 2.88 5.15 ± 0.94 8.38 ± 2.71 5.12 ± 0.79

Data are presented as mean values ± S.E.

Amino acid concentrations in shoots after root induction were not significantly differ-
ent in relation to BA, light treatments, sucrose concentrations or the interactions between
them (Table 3 and Supplementary Tables S13–S15). Alanine, arginine, asparagine and glu-
tamine levels were the highest in shoots after the rooting phase, regardless of the in vitro
treatment applied during the induction phase (Table 3).

Table 3. Effect of 6-Benzyladenine (BA) (22 and 44 µM) and sucrose concentration (1.5 and 3.0% (w/v))
and light treatment (white fluorescent or red LEDs) on amino acid content (µmol g FW−1) of Pinus
radiata D. Don shoots cultured in rooting medium (Quoirin and Lepoivre (LP) medium [27], modified
according to Aitken-Christie et al. [28], supplemented with mixture of 5 µM 1-Naphthaleneacetic
acid (NAA) and 10 µM indole-3-butyric acid (IBA)).

Free Amino Acids
(µmol g FW−1)

Retention Time
(min)

BA Concentration (µM) Light Treatment Sucrose Concentration (w/v)

22 44 White
Fluorescent Red LEDs 1.5% 3.0%

Alanine 5.323 19.14 ± 9.72 16.08 ±4.82 15.40 ± 6.71 19.43 ± 6.64 11.98 ± 4.54 22.54 ± 8.08
Arginine 5.035 29.98 ± 10.39 28.22 ±7.34 34.10 ± 8.77 22.8 ± 7.72 22.45 ± 6.74 35.34 ± 9.64

Asparagine 3.115 13.72 ± 8.27 24.78 ±8.18 16.09 ± 7.67 25.70 ± 9.39 30.53 ± 9.68 10.52 ± 6.05
Aspartic acid 1.204 0.57 ± 0.12 0.61 ± 0.07 0.68 ± 0.10 0.50 ± 0.05 0.60 ± 0.08 0.59 ± 0.10

Cysteine 7.140 3.47 ± 0.82 4.36 ± 0.55 4.61 ± 0.67 3.32 ± 0.60 3.95 ± 0.79 4.07 ± 0.53
Glutamic acid 1.849 9.31 ± 8.07 5.55 ± 2.64 11.78 ± 6.17 1.42 ± 0.10 3.60 ± 2.04 10.39 ± 6.54

Glutamine 3.827 52.78 ± 16.66 70.16 ±8.58 65.37 ± 12.38 61.26 ± 11.19 63.54 ± 12.57 63.41 ± 11.29
Glycine 4.231 0.11 ± 0.02 0.12 ± 0.01 0.13 ± 0.02 0.10 ± 0.01 0.10 ± 0.02 0.13 ± 0.01

Hydroxyproline 10.330 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
Histidine 4.016 0.15 ± 0.04 0.18 ± 0.02 0.18 ± 0.03 0.16 ± 0.02 0.18 ± 0.03 0.17 ± 0.02
Isoleucine 9.079 0.08 ± 0.01 0.10 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.10 ± 0.01 0.09 ± 0.01
Leucine 9.592 0.09 ± 0.02 0.11 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.11 ± 0.01
Lysine 10.018 0.14 ± 0.03 0.17 ± 0.02 0.16 ± 0.03 0.16 ± 0.01 0.17 ± 0.02 0.14 ± 0.02

Methionine 7.905 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01
Phenylalanine 8.927 0.05 ± 0.01 0.06 ± 4.9−3 0.06 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.06 ± 4.3−3

Proline 12.543 0.27 ± 0.07 0.30 ± 0.08 0.33 ± 0.09 0.23 ± 0.06 0.25 ± 0.07 0.31 ± 0.08
Serine 3.335 3.82 ± 3.16 1.01 ± 0.11 3.18 ± 2.24 0.83 ± 0.12 0.92 ± 0.14 3.27 ± 2.42

Threonine 4.386 0.12 ± 0.02 0.15 ± 0.01 0.14 ± 0.02 0.12 ± 0.01 0.13 ± 0.02 0.14 ± 0.02
Tryptophan 8.653 0.05 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.06 ± 5.0−3 0.05 ± 0.01 0.06 ± 4.6−3

Tyrosine 6.334 0.06 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 0.08 ± 0.01
Valine 7.760 0.29 ± 0.07 0.40 ± 0.04 0.38 ± 0.05 0.33 ± 0.04 0.32 ± 0.05 0.39 ± 0.05

Data are presented as mean values ± S.E.

Shoots cultured with the highest sucrose concentration showed higher levels of alanine,
arginine and glutamic acid than those cultured at the lowest sucrose concentration (Table 3).
In contrast, the asparagine content was higher in rooted shoots coming from explants
cultured in induction media supplemented with 1.5% sucrose than in those cultured with
3.0% sucrose.

After six weeks of culture in REM medium, no significant differences were found for
the amino acid concentrations in shoots coming from explants induced in the presence of
different concentrations of BA, light treatment and the interaction between both variables
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(Supplementary Tables S16–S18). However, the concentrations of alanine, arginine, glu-
tamine, glycine, and lysine exhibited a decrease when shoots had been cultured with the
highest BA concentration (Table 4). Pinus radiata shoots contained concentrations below
1.00 µmol g FW−1 of aspartic acid, glycine, hydroxyproline, histidine, isoleucine, leucine,
lysine, methionine, phenylalanine, threonine, tryptophan, tyrosine and valine, regardless
of the BA concentration used in the induction media (Table 4).

Table 4. Effect of 6-Benzyladenine (BA) (22 and 44 µM) and sucrose concentration (1.5 and 3.0%
(w/v)) and light treatment (white fluorescent or red LEDs) on amino acid levels (µmol g FW−1) of
Pinus radiata D. Don shoots cultured in Quoirin and Lepoivre (LP) medium [27], modified according
to Aitken-Christie et al. [28], supplemented with 2 gL−1 activated charcoal after the rooting phase.

Free Amino Acids
(µmol g FW−1)

Retention Time
(min)

BA Concentration (µM) Light Treatment Sucrose Concentration (w/v)

22 44 White
Fluorescent Red LEDs 1.5% 3.0%

Alanine 5.323 27.12 ± 9.12 15.29 ± 5.17 18.89 ± 7.55 19.96 ± 5.62 24.53 ± 6.87 12.74 ± 5.63
Arginine 5.035 67.60 ± 24.44 63.97 ± 15.2 79.68 ± 19.55 49.47 ± 16.80 68.70 ± 15.72 60.71 ± 23.06

Asparagine 3.115 0.76 ± 0.09 3.98 ± 3.30 0.73 ± 0.07 5.17 ± 4.50 4.56 ± 3.80 0.64 ± 0.06
Aspartic acid 1.204 0.81 ± 0.08 0.87 ± 0.08 0.82 ± 0.04 0.89 ± 0.12 0.90 ± 0.09 0.78 ± 0.06

Cystine 7.140 7.08 ± 0.74 7.39 ± 0.53 7.17 ± 0.60 7.41 ± 0.62 7.74 ± 0.66 6.69 ± 0.42
Glutamic acid 1.849 19.35 ± 10.99 27.51 ± 6.85 20.38 ± 8.18 29.34 ± 8.35 31.59 ± 9.19 15.67 ± 5.12

Glutamine 3.827 52.86 ± 12.07 39.56 ± 6.66 49.22 ± 10.51 38.70 ± 5.38 46.58 ± 5.06 41.08 ± 12.57
Glycine 4.231 0.20 ± 0.02 0.18 ± 0.02 0.18 ± 0.02 0.19 ± 0.03 0.20 ± 0.03 0.17 ± 0.01

Hydroxyproline 10.330 0.05 ± 0.01 0.09 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.09 ± 0.02 0.06 ± 0.0047
Histidine 4.016 0.24 ± 0.03 0.23 ± 0.02 0.23 ± 0.03 0.23 ± 0.03 0.26 ± 0.03 0.20 ± 0.02
Isoleucine 9.079 0.17 ± 0.01 0.17 ± 0.02 0.16 ± 0.01 0.18 ± 0.02 0.19 ± 0.02 0.15 ± 0.01
Leucine 9.592 0.22 ± 0.02 0.21 ± 0.02 0.20 ± 0.01 0.22 ± 0.03 0.22 ± 0.02 0.19 ± 0.01
Lysine 10.018 0.41 ± 0.16 0.25 ± 0.04 0.36 ± 0.11 0.25 ± 0.04 0.30 ± 0.04 0.32 ± 0.13

Methionine 7.905 0.02 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
Phenylalanine 8.927 0.11 ± 0.01 0.10 ± 0.01 0.09 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 0.10 ± 0.01

Proline 12.543 1.00 ± 0.18 1.02 ± 0.26 0.91 ± 0.17 1.12 ± 0.32 1.28 ± 0.28 0.67 ± 0.13
Serine 3.335 1.44 ± 0.14 1.41 ± 0.15 1.31 ± 0.11 1.53 ± 0.19 1.60 ± 0.16 1.19 ± 0.09

Threonine 4.386 0.23 ± 0.02 0.24 ± 0.02 0.24 ± 0.01 0.24 ± 0.03 0.27 ± 0.02 a 0.21 ± 0.01 b

Tryptophan 8.653 0.15 ± 0.02 0.12 ± 0.01 0.14 ± 0.01 0.12 ± 0.02 0.13 ± 0.01 0.13 ± 0.01
Tyrosine 6.334 0.14 ± 0.01 0.13 ± 0.01 0.13 ± 4.0−3 0.14 ± 0.01 0.15 ± 0.01 a 0.12 ± 0.01 b

Valine 7.760 0.63 ± 0.09 0.56 ± 0.06 0.56 ± 0.05 0.61 ± 0.09 0.63 ± 0.07 0.52 ± 0.06

Data are presented as mean values ± S.E. Different letters indicate significant differences by Duncan’s post hoc
test (p < 0.05).

Arginine, glutamine and lysine concentrations were the highest in shoots growing
under white FL. In contrast, concentrations of alanine, arginine, asparagine, aspartic
acid, cysteine, glutamic acid, glycine, hydroxyproline, isoleucine, leucine, methionine,
phenylalanine, proline, serine, tryptophan, tyrosine and valine increased in shoots exposed
to red LEDs (Table 4).

Threonine and tyrosine concentrations in rooted shoots cultured in induction media
with the lowest sucrose concentration were significantly higher than in shoots cultured in
media with the highest sucrose concentration (Table 4). Although not significant, it is worth
noting that alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine,
glycine, hydroxyproline, histidine, isoleucine, leucine, proline, serine and valine levels at
the end of the rooting phase were also lower in shoots cultured in medium with the highest
sucrose concentration during root induction (Table 4).

Significantly higher values of hydroxyproline were found in shoots developed in
a culture medium with 44 µM BA and 1.5% sucrose than in those from 44 µM BA and
3.0% sucrose. Additionally, the hydroxyproline levels were significantly higher in shoots
cultured in a medium with 44 µM BA and 1.5% sucrose than in those from 22 µM BA and
1.5% sucrose (Figure 7). The lowest hydroxyproline level was obtained in shoots induced
under the lowest BA concentration and cultured in medium supplemented with 1.5%
sucrose during the root induction phase (Figure 7).
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with the lowest sucrose concentration and exposed to red LEDs (Figure 8a–e). 
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Figure 7. Effect of 6-Benzyladenine (BA) (22 and 44 µM) and sucrose concentration (1.5 and 3.0%
(w/v)) on hydroxyproline amino acid level of Pinus radiata D. Don shoots cultured in Quoirin and
Lepoivre (LP) medium [27], modified according to Aitken-Christie et al. [28], supplemented with
2 gL−1 activated charcoal. Data are presented as mean values ± S.E. Different letters indicate
significant differences by Duncan’s post hoc test (p < 0.05).

After the rooting expression phase, the interaction between light treatment and su-
crose concentration showed statically significant differences for the aspartic acid, isoleucine,
phenylalanine, threonine and tyrosine levels (Figure 8a–e). Significantly higher concentra-
tions of the abovementioned amino acids were detected in shoots from medium with the
lowest sucrose concentration and exposed to red LEDs (Figure 8a–e).

Additionally, shoots coming from root induction at 3.0% sucrose and exposed to
red LEDs presented the lowest aspartic acid, isoleucine, threonine and tyrosine levels
(Figure 8a–e).

Forests 2022, 13, 1455 14 of 23 
 

 

 
Figure 7. Effect of 6-Benzyladenine (BA) (22 and 44 μM) and sucrose concentration (1.5 and 3.0% 
(w/v)) on hydroxyproline amino acid level of Pinus radiata D. Don shoots cultured in Quoirin and 
Lepoivre (LP) medium [27], modified according to Aitken-Christie et al. [28], supplemented with 2 
gL−1 activated charcoal. Data are presented as mean values ± S.E. Different letters indicate significant 
differences by Duncan’s post hoc test (p < 0.05). 

After the rooting expression phase, the interaction between light treatment and su-
crose concentration showed statically significant differences for the aspartic acid, isoleu-
cine, phenylalanine, threonine and tyrosine levels (Figures 8a–e). Significantly higher con-
centrations of the abovementioned amino acids were detected in shoots from medium 
with the lowest sucrose concentration and exposed to red LEDs (Figure 8a–e). 

  
(a) (b) 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

22 44 22 44

1.5% (w/v) 3.0% (w/v)

H
yd

ro
xy

pr
ol

in
e 

co
nc

en
tr

at
io

n
(µ

m
ol

/g
 F

W
-1

)

BA concentrations(µM)/sucrose concentrations%(w/v)

b

a

ab

b

0

0.2

0.4

0.6

0.8

1

1.2

F R F R

1.5% (w/v) 3.0% (w/v)

As
pa

rt
ic

 a
ci

d 
co

nc
en

tr
at

io
n 

(µ
m

ol
/g

 F
W

-1
)

Light treatments/Sucrose 
concentrations %(w/v)

b

a
ab

b

0

0.05

0.1

0.15

0.2

0.25

F R F R

1.5% (w/v) 3.0% (w/v)

Is
ol

eu
ci

ne
 c

on
ce

nt
ra

tio
n 

(µ
m

ol
/g

 F
W

-1
)

Light treatments/Sucrose 
concentrations%(w/v)

b

a

ab

b

Figure 8. Cont.
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Figure 8. Effect of light treatment (white fluorescent (F) or red LEDs (R)) and sucrose concentration
(1.5 and 3.0% (w/v)) on aspartic acid (a), isoleucine (b), phenylalanine (c), threonine (d) and tyrosine
(e) amino acid levels of Pinus radiata D. Don shoots cultured in Quoirin and Lepoivre (LP) medium [27],
modified according to Aitken-Christie et al. [28], supplemented with 2 gL−1 activated charcoal. Data
are presented as mean values ± S.E. Different letters indicate significant differences by Duncan’s post
hoc test (p < 0.05).

4. Discussion

In this study, the genotype affected the survival of the explants independently of the
collection date. This result could be partially explained since the genotype is an endogenous
factor that has a significant role in the regenerative potential, overall repeatability and
reliability of the tissue culture protocol [31]. As was reviewed in [32,33], the response
of explants to particular tissue culture conditions is highly dependent on the genetic
and physiological determination. In this sense, Pinus radiata, P. taeda L. and P. halepensis
showed a differential organogenic response in vitro depending on the genotype in previous
studies [25,34,35].

The highest survival and the lowest contamination rates were found during the first
collection date. Several protocols mention that factors such as the genotype, explant source
and plant growth regulators influence the in vitro regeneration of plants via organogenesis
or somatic embryogenesis [36–38]. In our case, the developmental stage of the explant
can be related to the contamination rate. On the first collection date, explants consisted of
apical shoot buds with closed scales; this source of explant could be better for the effective
elimination of contamination. Analogous results were obtained in Pseudotsuga menziesii
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Mirb. Franco [39] organogenesis, where spring buds showed higher contamination rates
than winter buds.

Silver nanoparticles have various applications in plant biotechnology, mainly to erad-
icate microbial contamination and promote in vitro development [40]. In this sense, the
use of a silver nanoparticle solution in our study favored the disinfection efficiency of the
explants, in agreement with the results for Fragaria × ananassa, Vanilla planifolia Andrews
and Psidium friedrichsthalianum (O. Berg) Nied, where the contamination rates of 23, 28 and
40%, respectively [37,40,41], were reported. In contrast, in P. halepensis, a negative effect of
the silver nanoparticle solution for the sterilization of apical shoot buds was found with a
contamination rate of 89% [25].

The timing of explant collection and the explant developmental stage influence the
response to organogenesis or somatic embryogenesis [42,43]. When the EFS was evaluated,
apical buds collected in the first week of February showed higher percentages than those
collected during the third and fourth weeks of February. A similar pattern has been reported
in other species, such as Quercus alba L. and Allamanda cathartica L., showing that the explant
developmental stage or the season of collection of explants played an important role in the
in vitro response [43,44]. During our study, a morphogenic peak from dormancy to bud
initiation was observed during the January and February collection dates, wherein tissues
became very active in terms of morphogenesis by increasing the shoot formation. These
results are in accordance with those obtained in shoot explants of Larix decidua Mill. [45,46],
where two short morphogenic peaks were observed, the first before bud break and the
second in late summer.

When we focused on the study of the effect of the BA concentration on EFS, no
statistically significant differences were obtained. In plant tissue culture, BA is the most
commonly used cytokinin [47]; in addition, BA, used alone or in combination with other
cytokinins, has been shown to efficiently promote in vitro bud induction [9,48]. In our
experiments, BA at the concentrations tested (22 and 44 µM) provided a satisfactory
organogenic response, and, although not significant, a slightly higher response in explants
cultured in media supplemented with 44 µM BA was observed. An analogous result
was obtained in P. halepensis using the same BA concentration [25]. Likewise, in P. pinea,
a higher number of buds formed per explant was observed during the first 16 days of
culture at the highest concentration of BA tested (44.4 µM) [49]. This behavior may be
attributed to the maturity of the explant used, as, most likely, the aged buds are not
as physiologically active as the young ones. For the above, higher concentrations of
exogenously applied growth regulators may be needed in mature explants to obtain similar
morphogenic responses, as reported for Tetraclinis articulata (Vahl) Masters [50]. In this
regard, Wendling et al. [51] mentioned that, through the continuous in vitro subculture
of shoots in media supplemented with cytokinins, reinvigoration can be obtained. In
our study, all genotypes evaluated were able to develop reinvigorated shoots in media
with both BA concentrations tested. These results agreed with those observed in P. pinea,
P. pinaster, P. silvestris and P. halepensis, where reinvigorated axillary shoots were obtained
through organogenesis, using buds as initial explants [9–11,25].

In order to obtain a root induction response in the explants, the culture medium was
supplemented with NAA combined with IBA, a mixture traditionally used to induce root
differentiation in Pinus species [11,24,34,52]. However, in this work, the rooting percentage
was low, as observed in P. pinea when NAA alone was applied [11]. Montalbán et al. [24],
studying P. radiata, reported that IBA alone was more efficient in the adventitious root
induction of shoots coming from explants of juvenile origin. In Pinus elliottii Engelm. var.
elliottii, Nunes et al. [53] observed that different concentrations and combinations of IBA
(4.9 and 9.8 µM) and NAA (1.1, 2.1 and 2.7 µM) led to low root frequency using shoots
developed from juvenile material. Likewise, in P. halepensis, long exposure to IBA was
not effective in inducing roots in shoots of mature origin [25]. It is widely recognized that
the most common problem encountered in the micropropagation of mature conifers is the
adventitious root formation in shoots [11].
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As reviewed by Bairu et al. [54], the development of basal callus is one of the main
physiological disorders that affects the rooting competence of microplants; this basal callus
could interfere with physiological processes by trapping essential growth constituents such
as plant growth regulators and creating a physical barrier. In our work, in the bases of
shoots, a large and profuse callus was observed, and this fact could have affected the devel-
opment of adventitious roots. In contrast, in slash pine, when inducing adventitious roots
using IBA combined with NAA, no callus formation was observed in shoots developed
from juvenile explants [53]. Similarly, in Pinus. roxburghii Sarg., using shoots developed
from juvenile explants, the root induction medium supplemented with NAA and solidified
with 0.6% agar produced shoots with low or no callusing at the base of the shoots [55]. In
P. taeda [35,56], a combination of auxin (2.68 µM NAA) with cytokinin (0.44 µM BA) was
evaluated and showed root induction of 55.6 to 47.5%, respectively. More recently, a pulse
with IBA 500 mg L−1 for 5 min was used as an ex vitro rooting preconditioning treatment in
Mitragyna parvifolia (Roxb.) Korth., obtaining approximately 90% micropropagated shoots
rooted ex vitro [57]. Soumare et al. [58] reported that the use of plant-growth-promoting
microbes, specifically Streptomyces griseorubens and Norcardiopsis alba, increased the rooting
and root hair in maize. In this sense, these recent strategies, or physical factors such as
the photoperiod, temperature and substrates for rooting, could be considered to improve
P. radiata rooting.

Carbohydrates in plants have several essential functions: they are basic elements
of macromolecules, constitute substrates for respiration, play an important role in the
synthesis pathway of many compounds and are indispensable for many other processes
related to plant development or gene expression [59,60]. In our work, the sucrose treatment
had a significant effect on the RI percentage, and the highest result was observed in 3%
(w/v) sucrose. Similar results were observed when comparing sucrose concentrations
(1–9%) for the root induction of Apple Rootstock MM 10, concluding that sucrose had a
direct effect on rooting [60]. Likewise, in banana (Musa sp) and Metroxylon sagu Rottb.,
the highest values for rooting were found in a medium supplemented with 3% (w/v)
sucrose [61,62]. In Eucalyptus globulus Labill. and P. pinea, glucose had a positive effect
during root induction [63,64]. Additionally, in E. globulus [63], it was reported that the
carbohydrates are an energetic requirement for root development and sucrose, which is
commonly used in tissue culture because it is the main sugar translocated in the phloem of
several plants [20,23].

The light type and wavelength specificity have an influence on morphogenetic re-
sponses such as adventitious root formation [23]. In several studies, LED lights have been
used as an alternative to conventional lighting sources for plant tissue culture [65]. Sup-
porting this, the spectral properties of LEDs have been found to regulate the morphological,
anatomical and physiological responses of in vitro plants [65]. In this work, it was stated
that the effectiveness of red LEDs on rooting depends on the genotype and the concentra-
tion of growth regulators applied in the root induction medium [65]. LED treatments (red
or blue) showed a higher response in the rooting of plantlets in Tripterospermum japonicum
Maxim, Gossypium hirsutum L. and Doritaenopsis [66–68]. In Anthurium, root formation
was progressively induced under a higher portion of red LEDs in a mixed circuit of blue
and red [69]. However, in this work, shoots grown under white FL showed a significantly
higher RI and NR/E. A similar pattern has been reported in Handroanthus ochraceus (Cham.)
Mattos, Achilea millefolium L. and Alocasia amazonica, where higher values of root induction
were obtained in plants growing under low FL irradiances [16,70,71].

When studying the effect of the BA concentration and light treatment on LLR, explants
induced with 44 µM BA and exposed to red LEDs showed the highest values. A similar
pattern has been reported in Vitis ficifolia Bunge var. ganebu, where longer roots were
obtained in plants growing under red LEDs [72]. In contrast, higher values of root length
were obtained in plants of H. ochraceus exposed to low FL irradiances [16].

Metabolite analysis showed significant differences for several carbohydrate and amino
acid concentrations in the different treatments tested. Carbohydrates in in vitro culture
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media have functions such as the maintenance of osmotic potential and to serve as a carbon
source for developmental processes including root induction [73,74]. When studying the
effect of the sucrose concentration supplemented in RIM, higher fructose, glucose and
sucrose content was found in shoots growing in culture medium supplemented with the
highest sucrose concentration. In A. amazonica, media supplemented with 3 or 6.0% sucrose
showed higher glucose, fructose and sucrose content in in vitro leaves compared with ex
vitro leaves [75]. Moreover, Mingozzi et al. [76], studying Cydonia oblonga Mill., concluded
that the sucrose content in leaves was associated with its content in the culture media,
and shoots cultured with 30 gL−1 sucrose showed higher content of sucrose, glucose
and fructose. Additionally, [15] explained that in vitro plants release invertase enzymes
to the culture medium that act in the hydrolysis of sucrose, giving rise to glucose and
fructose. In the present work, the levels of the carbohydrates were unaffected by lighting
conditions. Contrasting our results, the content of sucrose, starch and soluble sugars was
higher in plantlets of Doritaenopsis and G. hirsutum exposed to red plus blue and red LEDs,
respectively [67,68].

Amino acid metabolism plays an essential role in plant protein biosynthesis, represents
a building block for other biosynthesis pathways and is essential during signaling pro-
cesses [77]. Apart from the abovementioned functions, amino acids may also be involved
in the plant stress response through intracellular pH regulation and the detoxification of
reactive oxygen species [78,79]. Tyrosine is the precursor of secondary metabolites such
as betacyanin in Alternanthera brasiliana (L.) Kuntze and certain enzymes such as tyrosine
decarboxylase, which is responsible for redirecting essential primary metabolites into sec-
ondary metabolic pathways [80,81]. In addition, in P. radiata embryonal masses initiated
under stressful conditions, Castander et al. [4] discussed that tyrosine could be involved in
antioxidative processes and osmotic adjustment. Likewise, the tyrosine metabolism path-
way serves as a starting point for the production of tyrosine-derived metabolites essential
to plant survival, such as tocopherols, plastoquinone and ubiquinone [82]. With regard to
threonine, it is an essential amino acid, and it is a substrate for isoleucine synthesis [83].
Moreover, threonine metabolites have an important role in plant growth and development,
cell division and responses to abiotic stresses [83,84]. However, in our study, the shoots
with higher content of these two amino acids showed worse in vitro rooting (those coming
from root induction medium with 1.5% (w/v) sucrose, at the end of the rooting phase).

Krasenski et al., Lugan et al. and Joshi et al. [83,85,86] observed amino acid accumu-
lation in plants exposed to abiotic stress, such as drought, extreme temperature, salinity
and osmotic stress. In this sense, tobacco plants showed high levels of aromatic amino
acids, and this fact was related to the improvement of salt stress tolerance [87]. In this
study, our results suggest that low sucrose concentrations could be related to abiotic stress
similar to that observed in nutrient deficiencies or carbohydrate starvation, such as the
results observed in Camellia sinensis (L.) Kuntze leaves, where increased threonine levels
were observed under phosphate starvation [88]. However, the amino acid pool differs and
changes depending on the developmental and physiological stage of the plant [77].

5. Conclusions

The regeneration of P. radiata from the vegetative shoot buds of adult trees via organo-
genesis was achieved, and it depended on environmental physico-chemical factors. The
collection date and genotype had a strong effect on the efficiency of the process. Reinvigo-
rated shoots from adult trees were obtained at both of the BA concentrations tested. The
optimal result in terms of shoot induction was obtained at the highest BA concentration.
Our results suggest that the use of white FL and a 3% sucrose concentration was better for
root induction. The low RI percentage suggests that further research should be encouraged
to improve this phase, which is still a bottleneck in the micropropagation of mature conifers.

Moreover, shoots showing better in vitro rooting had higher fructose, glucose and
sucrose content, whereas those from the worse root treatment showed higher threonine
and tyrosine levels.



Forests 2022, 13, 1455 18 of 22

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13091455/s1. Table S1: Statistical analysis for explants forming
shoots [EFS (%)] in different collection dates from Pinus radiata D. Don cultured in LP medium [27]
modified by Aitken-Christie et al. [28]; Table S2: Statistical analysis for explants forming shoots [EFS
(%)] from nine different genotypes of Pinus radiata D. Don cultured in LP medium [27] modified
by Aitken-Christie et al. [28] supplemented with 6-benzyladenine (BA) (22 and 44 µM); Table S3:
ANOVA for number of shoots formed per explant (NS/E) from Pinus radiata D. Don cultured in
LP medium [27] modified by Aitken-Christie et al. [28] supplemented with 6-benzyladenine (BA)
(22 and 44 µM); Table S4: Statistical analysis for root induction (%), number roots per explant, and
length of longest root from Pinus radiata D. Don cultured in LP medium [27] modified by Aitken-
Christie et al. [28] according to 6-benzyladenine (BA) concentrations and light treatments applied
in the root induction phase; Table S5: Statistical analysis for root induction (%), number roots per
explant, and length of longest root from Pinus radiata D. Don cultured in LP medium [27] modified by
Aitken-Christie et al. [28] according to and 6-benzyladenine (BA) and sucrose concentrations applied
in the root induction phase; Table S6: Statistical analysis for root induction (%), number roots per
explant, and length of longest root from Pinus radiata D. Don cultured in LP medium [27] modified
by Aitken-Christie et al. [28] according to light treatments and sucrose concentrations applied in the
root induction phase; Table S7: ANOVA for carbohydrates content of Pinus radiata D. Don cultured
in LP medium [27] modified by Aitken-Christie et al. [28] supplemented with a mixture of 5 µM
1-Naphthaleneacetic acid (NAA) and 10 µM indole-3-butyric acid (IBA) according to 6-benzyladenine
(BA) concentrations and light treatments; Table S8: ANOVA for carbohydrates content of Pinus radiata
D. Don cultured in LP medium [27] modified by Aitken-Christie et al. [28] supplemented with a
mixture of 5 µM 1-Naphthaleneacetic acid (NAA) and 10 µM indole-3-butyric acid (IBA) according to
6-benzyladenine (BA) and sucrose concentrations; Table S9: ANOVA for carbohydrates content of
Pinus radiata D. Don cultured in LP medium [27] modified by Aitken-Christie et al. [28] supplemented
with a mixture of 5 µM 1-Naphthaleneacetic acid (NAA) and 10 µM indole-3-butyric acid (IBA)
according to light treatments and sucrose concentrations; Table S10: ANOVA for carbohydrates
content of Pinus radiata D. Don cultured in LP medium [27] modified by Aitken-Christie et al. [28]
supplemented with 2 gL−1 activated charcoal, according to 6-benzyladenine (BA) concentrations
and light treatments; Table S11: ANOVA for carbohydrates content of Pinus radiata D. Don cultured
in LP medium [27] modified by Aitken-Christie et al. [28] supplemented with 2 gL−1 activated
charcoal, according to 6-benzyladenine (BA) concentrations and sucrose; Table S12: ANOVA for
carbohydrates content of Pinus radiata D. Don cultured in LP medium [27] modified by Aitken-
Christie et al. [28] supplemented with 2 gL−1 activated charcoal, according to light treatments and
sucrose concentrations; Table S13: ANOVA for amino acid content of Pinus radiata D. Don cultured
in LP medium [27] modified by Aitken-Christie et al. [28] supplemented with a mixture of 5 µM
1-Naphthaleneacetic acid (NAA) and 10 µM indole-3-butyric acid (IBA) according to 6-benzyladenine
(BA) concentrations and light treatments; Table S14: ANOVA for amino acid content of Pinus radiata
D. Don cultured in LP medium [27] modified by Aitken-Christie et al. [28] supplemented with a
mixture of 5 µM 1-Naphthaleneacetic acid (NAA) and 10 µM indole-3-butyric acid (IBA) according to
6-benzyladenine (BA) and sucrose concentrations; Table S15: ANOVA for amino acid content of Pinus
radiata D. Don cultured in LP medium [27] modified by Aitken-Christie et al. [28] supplemented with
a mixture of 5 µM 1-Naphthaleneacetic acid (NAA) and 10 µM indole-3-butyric acid (IBA) according
to light treatments and sucrose concentrations;Table S16: ANOVA amino acid content of Pinus radiata
D. Don cultured in LP medium [27] modified by Aitken-Christie et al. [28] supplemented with 2 gL−1

activated charcoal according to 6-benzyladenine (BA) concentrations and light treatments; Table S17:
ANOVA for amino acid content of Pinus radiata D. Don cultured in LP medium [27] modified by
Aitken-Christie et al. [28] supplemented with 2 gL−1 activated charcoal according to 6-benzyladenine
(BA) and sucrose concentrations; Table S18: ANOVA for amino acid content of Pinus radiata D.
Don cultured in LP medium [27] modified by Aitken-Christie et al. [28] supplemented with 2 gL−1

activated charcoal according to light treatments and sucrose concentrations.
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