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THE DIRECT EFFECT ON GEOID COMPUTATIONS
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ABSTRACT

The most popular technique for the reduc-
tion of gravity to the geoid is the Helmert’s conden-
sation method. Two different ways to apply this
reduction are studied: the classical approach (Wang
and Rapp, 1990, Heiskanen and Moritz, 1967), and
the one by Vanicek and Kleusberg (1987}, extended
by Martinec et al. (1993). The classical approach
(Wang and Rapp, 1990, Heiskanen and Moritz,
1967) argues that the effect of the condensed layer
has to be evaluated at geoid level and not at the
terrain level as stated by Vanicek and Kleusberg,
1987. Jekeli and Serpas {2003) conclude that both
methods are correct from the theoretical point of
view, and the difference is in the order of applica-
tion of the remove, restore and downward conti-
nuation procedure. The computation of the geoid is
analyzed under the two mentioned approaches and
the results are compared to geoid undulations co-
ming from GPS and orthometric heights in three
different regions in .the USA. Numerical assess-
ment of the different approaches shows that both
yield similar results in relatively flat areas, and that
the classical approach provides better results in
mountainous areas with rough topography.

KEYWORDS: Helmert’s condensation method,
geoid, direct effect.

RESUMEN

Latécnica mds popular parala reduccion de
observaciones gravimétricas al geoide es el método
de condensacién de Helmert. Dos maneras diferen-
tes de aplicar dicha reduccion son estudiadas: el
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enfoque clasico (Wang y Rapp, 1990, Heiskanen y
Moritz, 1967) y el enfoque por Vanicek and Kleus-
berg (1987), extendido por Martinec et «f. (1993).
Elenfoque cldsico (Wang y Rapp, 1990, Heiskanen
y Moritz, 1967) argumenta que el efecto de la capa
condensadatiene que ser evaluado enel geoide y no
en el terreno como ha sido expuesto por Vanicek y
Kleusberg, 1987. Jekeli y Serpas (2003) concluyen
que ambos métodos son correctos desde el punto de
visla tedrico, siendo la diferencia el orden en la
aplicacion a la hora de remover y restaurar, y de
la continuacién descendente al geoide. El célculo
del geoide es analizado con los dos métodos men-
cionados y los resultados son comparados con
ondulaciones del geoide obtenidas por ladiferencia
de alturas elipsoidales por GPS y alturas ortométri-
cas en tres regiones diferentes en los Estados Uni-
dos. Pruebas numéricas muestran que ambos enfo-
ques producen resultados similares en dreas
relativamente planas, y que el enfoque cldsico
provee mejores resultados en dreas montafiosas
con topografia variada.

PALABRAS CLAVES: método de condensacién
de Helmert, geoide, efecto directo.

1. INTRODUCTION

The knowledge of the geoid has gained im-
portance nowadays due to the increasing interest of
the use of GPS measurements for computing ortho-
metric heights. The computation of a precise geoid
model, at centimeter level of accuracy, is needed in
order to take advantage of GPS measurements, which
are more convenient than the classical geometric and
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trigonometric methods of leveling. The use of Hel-

mert condensation method for the computation of

geoid could provide the centimeter level accuracy
needed. Many papers regarding the way to properly
apply this method have been published during the last
decade (Vanicek and Kleusberg, 1987, Wang and
Rapp, 1990; Martinec et al., 1993; Heck, 1993;
Vanicek and Martinec, 1994, Najavandchi, 2001,
Jekeli and Serpas, 2003). It is important therefore to
assess the different solutions in order to establish the
appropriate method to compute the geoid.

In this paper these solutions are studied and
compared to the geoid coming from GPS observa-
tions on benchmarks with orthometric heights.

Z. THE HELMERT’S CONDENSATION
METHOD

The Helmert’s condensation method for re-
ducing gravity consists of the radial condensation
of the topography above the geoid into a thin
surface layer on the geoid (Heiskanen and Moritz,
1967). These masses are condensed along the local
vertical with density (Heiskanen and Moritz, 1967,
Vanicek and Martinec, 1994);

k=ph, (2.1)
where p is the average density of the terrain along
height hy,.

For the computation of the geoid by means
of Stokes” integral we have:

R
N=—— || Ags(y)do +ON, (22
) Agswdo 43N, @2
where in this case:

Ag=g,-vo+F-Ar+ Ay 2.3
with g, measured gravity

Yo normal gravity at geoid

[ the free air reduction

Ay the attraction due to the condensed layer

with density k

Avy the attraction due to the topography

Aq =2nGph, - A
A, the terrain correction
SN, the indirect effect
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2.1  The classical approach

For the attraction of the condensed layer
Wang and Rapp (1990), consider a point on the
geoid and this attraction is given by:

oW d Gph
A, =-— =2nGph_—|— || ——dxd
" an, & L}h I o yl
h, =0 P »=0
=21T,Gphp (2.1-1)

with lpg the distance from P on the terrain to a point
onthe geoid. Subtracting At fromequation (2.1-1),
thedirect effect can be written in planar approxima-
tion as the terrain correction (Wang and Rapp,
1990}:

h-h )
o e, =7£-Gpﬂ‘£—-d:idxdy=A,
| (2.12)

with d2=(x—xp)2+(y-yp)1, Notice that this correction
yields gravity anomalies that are exactly the Faye
anomalies. We will refer to this approach as the
W/R approach.

The term 8N in (2.1-1) is often neglected,
but in this context should be considered since it can
reach upto 5 cm for an elevation of 1000 m (Moritz,
1980). This term can be computed as (Heiskanen
and Moritz, 1967; Wang and Rapp, 1990):

ON;=0W, /v (2.1-3)
where W, is the difference in potential between
the mass of the actual topography and the mass of the
condensed layer and is evaluated at geoid level.
Equation (2.1-4) can be written in planar approxi-
mation as {Wang and Rapp, 1990):

-nGph?> 1Gp ffh'=h’
N Pt A |
¥ 6 v d

dx dy (2.1-4)
2.2 The Vanicek and Kleusberg approach

Vanicek and Kleusberg (1987) referred the
attraction of the condensed layer to a point P on the
topographic surface. The attraction of the condensed
layer ata point Pis given by (Wang and Rapp, 1990):
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Al = ﬂ y dx dy
I’(J
=2nGph —¢ (2.2-1)
where:
h-h,
g, =-Gph, J.J. de dy (2.2-2)

Equation(2.2-1)tells us that the direct effect
can now be written as (Vanicek and Kleusberg,
1987):

A, A;‘,z-GpH LILI

(2.2-3)

which is different from equation (2.1-2). Equation
{2.1-2) is always positive, while equation (2.2-3)
can take on positive and negative values according
tothetopography. We will call it the V/K approach.

Martinec et al. (1993) derived an expression
where they argue that the effect of the condensed
layer has to be evaluated at terrain level as stated by
Vanicek and Kleusberg and not at the geoid level as
argued by Wang and Rapp. They arrived at a
different formulation for the evaluation of the gra-
vity anomalies when using Helmert condensation
method:

Ag=Ag"

—A;+ A +g +8s (2.2-4)

with: Agf =g, -y +F
s is the so-called secondary indirect effect

and itis given by Heiskanen and Moritz (1967), eq.
(3-51). In this formula also the term g, is included.

This term represents the downward continuation of

gravity anomalies from the topographical surface
to the geoid, and it can be written with good
approximation as:

_RY (2.2-5)

2n

I

. jéﬁd

with 1, the distance on the geoid.

The evaluation of g, is usually carried out
under the assumption of linear correlation between
terrain and gravity anomalies:

Ag = a + 2nGph (2.2-6)

Under this assumption the term g, can be
written as:

= th‘h

If we now substitute this term in (2.2-4) the
correction to be applied to the free air gravity anoma-
lies can be written in planar approximation as:

Ap-Al+g :—G [l

(2.2-7)

dxdy
& n2s

[t has to be noticed at this point that equation
(2.2-8) is the same, considering the assumption on
linear relationship between gravity anomaly and
height, as equation (2.1-2) derived by Wang
and Rapp (1990).

It has to be pointed out that Wang and Rapp
(1990} do not assume any relationship between
gravity anomalies and topography (Jekeli and Ser-
pas, 2003). The equation derived by Wang and
Rapp (1990) turns out to be the same as equation
{2.2-8) under the approximations used.

From equation {2.2-4) we can see that the
V/K approach neglects completely the term g; in
their derivation and needs to be included. The
inclusion of the downward continuation should be
performed without considering any dependency bet-
ween gravity anomalies and topography. With res-
pect to the computation of the indirect effect, there is
nodifference between both approaches. Both approa-
ches used equation {2.1-4) in their computations.

Vanicek and Martinec (1994) developed
more thoroughly the theory on the principles by
Vanicek and Kleusberg and identify the downward
continuation as key factor in the reduction. Naja-
vandchi (2001) came up with expressions develo-
ped from harmonic coefficient of the topography.
Jekeli and Serpas (2003) developed equations for
the direct effect on spherical approximation based
onprinciples by Moritz (1980} and Pellinen (1962):
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4nGp , ,
SgMP:_—"Bh;:"'
Gp (h=h )" 3(h—h,)
Rl E e e
) it "
(2.2-9)

and for the Vanicek and Martinec (V/M):
AnGp

agvM:_ h;+—
R =h> 3(h-h 9
+~G—pR2“ —" IR L ?"} (h; —h*+2h,h)+ - o
200 4

(2.2-10)

where: 1, is the distance between two points on
sphere of radius R+h,,

Ipg is the distance between a point P and
the sphere of radius R

Notice that the first integrand term in both
equations isthe same as the W/R and V/K approaches
in spherical approximation. The constant term re-
aches sub milligal levels.

Finally, it is worth mentioning that the
downward continuation is a key factor for
thereduction of gravity anomalies to the geoid. The
downward continuation is known to be an ill-posed
problem and errors in the data are amplified by this
procedure. For the case of the classical approach,
the downward continuation of Bouguer anomalies
is usually neglected under the assumption of
smoothness of Bouguer anomalies, while the
downward continuation of Helmert anomalies
cannot be neglected and its contribution is neces-
sary for the proper computation of the geoid
when using the Vanicek and Kleusberg approach.

3. NUMERICAL RESULTS

In order to asses the accuracy of the diffe-
rent approaches, data of rough and flat topography
terrain with different gravity signatures are consi-
dered in the computations. Three areas are evalua-
ted. They will be referred as area |, area 2 and area
3. See Table 3.1 for the description of these areas:
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Table 3.1. Areas used for the computations.

Latitude Longitude Mean Min Max

elev elev elev

Area from to from to (m) (m) (m)
1 42°  48° -101° -91° 433 183 1027
38 42°  -88° 80° 270 106 1456

37° 44° -110° -103° 2032 836 4334

Area 1 is known for its characteristic com-
plicated gravity signature. which is not related
linearly to the topography. For the case of area 3,
this is located in the USA Rocky Mountains, which
is important due to the high frequency content of
gravity anomalies. Area 2 is located on a relative
flat area with no special characteristics. The remo-
ve restore technique for the geoid computation by
Stokes’ integral was used. The low frequency part
of gravity anomalies and geoid undulations from
EGM96 were used. Edge effects are removed
from the results and the comparisons are done in a
reduced inner area. The geoid undulations are gi-
ven at the same location as the gridded data of
gravity anomalies. On the other hand, ellipsoidal
heights in the same area are not at the same locatio-
ns of gridded data. Therefore the geoid undulations
were interpolated at the same locations where in-
formation of ellipsoidal heights are given. This was
done by the use of cubic interpolation within the
area of interest. With the information of geoid and
ellipsoidal heights at the same locations, the com-
puted geoid undulations coming from the M/P and
V/M approaches, and a third one called V/IM+DC,
where the downward continuation is included for
the V/M approach, are compared to geoid undula-
tions coming from the GPS network. In the com-
putations only the first term of the integral for
the M/P and V/M approaches is used. Also diffe-
rences for the G99SSS gravimetric geoid from
NGS on the same locations are presented. The
results are presented in Tables 3.2 to 3.4.
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Table 3.2. Differences geoid undulations area 1.

Mean Std Min Max

Diff Dev Dift Diff

[cm] [em] [em] [em]

M/P 88.0 6.2 74.9 113.9
VM 86.9 6.2 73.7 112.3
VIM+D/C  87.7 6.2 46.2 113.0
G99SSS 778 6.1 66.9 102.5

Table 3.3. Differences geoid undulations area 2.

Mean Std Min Max

Diff Dev Diff Diff

[em] [em] [em] [cm]

M/P 49.6 6.3 34.2 63.5
VIM 484 6.5 32.9 62.9
VIM+D/C  47.9 6.4 32.1 62.1
G99SSS 51.8 5.8 39.9 67.1

Table 3.4. Differences geoid undulations area 3.

Mean Std Min Max

Diff Dev Diff Dift

[em] [em] [cm] [em]

M/P 40.9 8.3 20.2 63.3
VM -26.2 23.4 -90.5 22.1
VIM+D/C  12.6 14.6 -27.0 47.1
63.0 8.6 32.6 86.3

G99SSS

4. CONCLUSIONS

We can observe that for the computation of
the absolute geoid in areas 1 and 2 the three me-
thods analyzed provide the same level of accuracy
in terms of standard deviation being in the order of
6 cm. The picture is different for mountainous
areas, where the M/P approach provides the best
results with a standard deviation of 8.5 cm compa-
red to the V/M and V/M+D/C approaches reaching
23 and 14.6 cm respectively.

The M/P approach provides similar results
as those of G99SSS. This can be attributed to the
fact that both use the same approach.
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