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ASGARD+ (Accelerated Sequential Genome-analysis and Antibiotic Re-
sistance Detection) is a command-line platform for automatic identification
of antibiotic-resistance genes in bacterial genomes, providing an easy-to-use
interface to process big batches of sequence files from whole genome se-
quencing, with minimal configuration. It also provides a CPU-optimization
algorithm that reduces the processing time. This tool consists of two main pro-
tocols. The first one, ASGARD, is based on the identification and annotation of
antimicrobial resistance elements directly from the short reads using different
public databases. SAGA, enables the alignment, indexing, and mapping of
whole-genome samples against a reference genome for the detection and call
of variants, as well as the visualization of the results through the construction
of a tree of SNPs. The application of both protocols is performed using just
one short command and one configuration file based on JSON syntax, which
modulates each pipeline step, allowing the user to do as many interventions
as needed on the different software tools that are adapted to the pipeline. The
modular ASGARD+ allows researchers with little experience in bioinfor-
matic analysis and command-line use to quickly explore bacterial genomes in
depth, optimizing analysis times and obtaining accurate results. © 2023 Wiley
Periodicals LLC.
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INTRODUCTION

Epidemiological surveillance has played an essential role in health systems worldwide in
analyzing the role, distribution, and effect of antimicrobial-resistant bacteria that cause
several infectious diseases (Gilchrist, Turner, Riley, Petri, & Hewlett, 2015; Simar, Han-
son, & Arias, 2021). Research on the bacterial resistance mechanisms is essential for
tracking pathogen outbreaks and decision making related to public health (Mäklin et al.,
2021; Tümmler, 2020). In response to these needs, bioinformatic methodologies have
been developed to facilitate the efficient analysis of pathogens through the use of next-
generation sequencing (NGS) and whole-genome sequencing (WGS) technologies (Van
Camp, Haslam, & Porollo, 2020). The massive data generated from these technologies
require substantial processing to obtain valuable information, which is why the need for
the standardization of bioinformatic protocols has arisen, mainly for the effective analysis
of big sample batches (Shelenkov, 2021). This article presents the ASGARD+ (Fig. 1)
command-line-based platform for the analysis of large WGS data sets, and a step-by-step
protocol on how to install and run this tool. Basic Protocol 1 includes the installation and
configuration of the tool for any Linux-based operating system. Basic Protocol 2 explains
how to edit the configuration files needed to run the protocols. Next, in Basic Protocol
3, we explain how to execute the first utility of the platform, called ASGARD, which
enables the analysis of multiple WGS samples at the same time; using the ARIBA tool
(Hunt et al., 2017), antimicrobial resistance genes found in the samples can be annotated.
As a result, this protocol produces a summary of the genes found and the necessary files
to create a visualization on the Phandango web platform (Hadfield et al., 2018). Details
of how to use this platform are explained in the Support Protocol. Basic Protocol 4 details
how to run the second utility of the ASGARD+ platform, called SAGA. SAGA detects
single nucleotide polymorphisms (SNPs) in the WGS samples using a reference genome.

Figure 1 General workflow applied in ASGARD and SAGA protocols. This figure summarizes
the general steps run in the ASGARD+ platform and which files are needed and produced in each
step. In this scheme, the different shapes have different meanings: cylinder (database), rectangle
(execution step), rhomboid (file), circle (web platform).
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As a result of this protocol, a phylogenetic tree is obtained, and it can be used to com-
pare the variants between the samples through its visualization in tools such as FigTree
(http:// tree.bio.ed.ac.uk/software/figtree/ ). Alternate Protocol 1 provides another option
for installing ASGARD+ using containers, while Alternate Protocol 2 indicates how to
run ASGARD+ in a container. These last two protocols provide an alternative for gen-
erating replicable configuration of the tool and its implementation. ASGARD+ aims to
facilitate the processing of large data sets generated during epidemiological surveillance,
and due to its easy implementation, this tool can be employed by users with no back-
ground or experience in the use of bioinformatics methodologies to analyze any number
of bacterial genomes using Illumina sequences, regardless of their length.

BASIC
PROTOCOL 1

ASGARD+ INSTALLATION

Similar to their experimental counterparts, bioinformatic analyses require the execution
of multiple steps and procedures to achieve valid and reproducible results. Creating a con-
trolled environment where the execution parameters can be established and documented
is essential to ensure the quality of the experiments (Carriço, Rossi, Moran-Gilad, Van
Domselaar, & Ramirez, 2018). Configuring and running multiple bioinformatics software
can easily become complex since it requires repetitive processes that, in turn, can become
points of failure. ASGARD was developed using Python 3.6 as its foundation, along with
multiple built-in libraries that provide most of its functionalities; however, several other
dependencies are used to broaden its capabilities. These external dependencies are based
on open-source software available on the default repository of the Python package man-
ager, pip (https://pypi.org/ ). This protocol establishes the necessary actions to replicate
the environment in which the tool was developed and tested. To install ASGARD+, it
is recommended to install Conda (https://docs.conda.io/en/ latest/ ), which provides a
simple solution to manage multiple Python versions and environments. A list of require-
ments is provided in the repository’s main branch, which contains the minimum version
required for the installation. This program was developed for Linux environments, so its
operation on other platforms cannot be guaranteed. ASGARD uses multiple open-source
programs to run the analysis; these requirements must be ready before the first execution
of ASGARD. The version of each software is checked before each run. The steps to ful-
fill these requisites require root permission of the operating system. Multiple versions of
these programs are available in the repositories; however, the specific versions tested are
shown below.

Materials

Hardware

Computer or computational cluster with access to command line environment

Software

A Linux-based operating system—in this protocol a Debian- or Ubuntu-based OS
is required, however it could be adapted to run in other Linux distributions

Bash terminal or equivalent
Miniconda installation script
Git version control system
A Python environment running version 3.6 or higher
ASGARD application files
ASGARD default workflow configuration files

1. Update the software repositories.

i. $ apt update
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This command fetches the latest information about packages and their versions. This infor-
mation is gathered from the default repositories of the operating system which are defined
in the /etc/apt/sources.list file.

2. Download and install the version control software git and the wget tool.

i. $ sudo apt install git wget

By running this command, it is possible to install the latest version of git, which is an open-
source solution to run a distributed version control system. This allows the user to get the
source code of Asgard from the main repository. wget is a free software for retrieving files
using different communication protocols.

3. Download the latest version of ASGARD from the repository using the git repository.

i. $ git clone https://gitlab.com/CNCA_CeNAT/asgard

Using the git tool, clone (download) the latest version of ASGARD with the default config-
uration files from the official repository. Once the repository is downloaded, the user must
have an asgard folder. This folder contains the resources and codes necessary for the
implementation of this platform.

4. Install the free community edition of conda, the environment manager system, and
create a new environment for ASGARD+ to run.

i. $ wget https://repo.anaconda.com/miniconda/Miniconda3-py38_4.10.3-Linux-

x86_64.sh -O miniconda.sh

ii. $ bash./miniconda.sh -b -p $HOME/miniconda && $HOME/miniconda/bin/conda

init && exec bash

With conda, it is possible to manage package installation and Python environments to iso-
late the dependencies for each configuration file.

iii. $ conda create --name asgard+ python=3.6 -y && conda activate asgard+

5. Locate the asgard directory downloaded from git repository and run the dependen-
cies installation scripts.

i. $ cd asgard

ii. $./script/pip-dependencies.sh

iii. $./script/conda-dependencies.sh

iv. $ sudo./script/debian-dependencies.sh

BASIC
PROTOCOL 2

CONFIGURATION FILES GENERAL SETUP

The ASGARD+ execution process is based on the concept of pipelines, i.e., the execution
of a series of sequential steps that analyze the input information. Each one of these steps
or stages generates partial results, which in turn feed the next program in the sequence. In
ASGARD+, these pipelines are described in the custom AJSON type configuration files,
which are based on the concepts of "JavaScript Object Notation" but add to it a series of
functionalities that extend its operation. To run any pipeline using ASGARD+, it must
be expressed in an AJSON file complying with the established structure. The schema and
anatomy of these files can be found on the main page of the repository. By default, two
main configuration files—ASGARD.ajson and SAGA.ajson—are provided, which
in this case can be seen as proof of the concept of these configuration files. One of the
essential parts of these files resides in the “constant” property where the paths to the
input files are located and the path where the output files should be created. These files
are modifiable and configurable according to the user’s needs, but to make use of these
original pipelines, it is only necessary to modify the three main parameters described
below.
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Figure 2 Structure and composition of the ASGARD+ platform configuration files. This image
shows the saga.ajson file as an example. The constant object is highlighted in the blue box. (A)
Parameter to indicate the directory path where the WGS files are found. (B) Parameter to indicate
the output directory. (C) Parameter to indicate the extension of the fastq format. (D) Parameter to
indicate if the input sequences are paired or not. (E) Parameters to indicate the nomenclature of
the forward and reverse files.

Materials

Software

A simple text editor such as Vim, Nano, or Emacs
A copy of the ASGARD+ repository

1. Locate the ASGARD+ directory.

2. Open the config directory. Three files should be present in this path:
schema.json, asgard.ajson, saga.ajson.

3. Open each configuration file with a text editor and locate in the first rows the
constant object (Fig. 2) as well as the input_path, output_path, and in-
put_extension.

4. Replace ./input_directory/ (Fig. 2, label A) with the path to your input files.

5. Replace ./output_directory/ (Fig. 2, label B) with the path to where the out-
put file should be generated.

A new directory within the specified route will be generated. The new directory name
should be the same as the last part of the route with a timestamp and the name of the
pipeline.

6. Edit the input_extension in case it is needed. By default it is set to .fastq.gz
(Fig. 2, label C).

Depending on the sequencing technology and the facility where this process is carried
out, the way in which the Fastq format extension is designated may vary. This can change
between .fastq, .fq, and, if the files are compressed, the extension .fastq.gz or
.fq.gz can be added. ASGARD+ takes this extension as a constant to run the protocol,
so it is necessary to specify it in the constants section of the configuration file.

7. Indicate if the WGS sequences files are paired-end (have a Forward file and Reverse
file) by writhing “true” in the “paired_input” parameter or “false” if the
data is composed of a single file per sample (Fig. 2, label E).

Montero-Vargas
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8. Indicate with which nomenclature the forward and reverse files are distinguished in
the "forward" and "reverse" parameters, respectively, if the WGS files are paired
(Fig. 2, label F).

As well as the fastq extension, the way the forward and reverse files are distinguished in the
file name may vary. Forward and reverse files are usually named using "R1" and "R2,"
or with numbers like "1" and "2." The user must indicate how to distinguish both files so
that ASGARD+ can associate the paired files with each other correctly.

9. Edit the workers number (Fig. 2, label D) to reflect the number of logical processors
(CPU cores). If this value is unknown, it can be queried using the following command.

$ nproc --all

BASIC
PROTOCOL 3

ASGARD EXECUTION

The first protocol to be implemented on the ASGARD+ platform is ASGARD. This is
designed for the identification of antimicrobial resistance genes with the ARIBA tool,
facilitating the analysis of large Whole Genome Sequencing (WGS) datasets. ARIBA
works by running local assemblies on paired sequencing reads and compares them against
antimicrobial resistance gene reference sequences stored in various databases, such as
ARG-ANNOT (Gupta et al., 2014), CARD (McArthur et al., 2013), MEGARes (Lakin
et al., 2017), NCBI BioProject (Barrett et al., 2012), Plasmidfinder (Carattoli et al.,
2014; Clausen, Aarestrup, & Lund, 2018), Resfinder (Zankari et al., 2012), VFDB (Chen,
Zheng, Liu, Yang, & Jin, 2016), SRST2’s version of ARG-ANNOT (Inouye et al., 2014),
and VirulenceFinder (Clausen et al., 2018; Joensen et al., 2014; Malberg Tetzschner,
Johnson, Johnston, Lund, & Scheutz, 2020). Users can employ any of these databases
for analysis according to their criteria. ARIBA is the main program in this pipeline, but
other functionalities are implemented directly on ASGARD+.

Materials

Hardware

A multicore processor is not required but highly advisable since the workload can
be highly compute intensive

At least 4 GB of free RAM memory for the analysis; however, it can make use of
more than 20 GB at a time

Enough storage space to store the output files; this can range from 1 GB to 150 GB
depending on the number of input files

An internet connection of at least 10 Mbps to download the databases

Software

A copy of the ASGARD+ repository with the configuration files edited with the
updated paths

The Python environment setup as in the Basic Protocol 1
A text editor program

1. Edit the specific properties for this protocol in the asgard.ajson configuration file:

i. ariba_database: The valid options include argannot, card, ncbi, megares,
plasmidfinder, resfinder, srst2_argannot, vfdb_core, vfdb_full, virulencefinder.

2. Go to the ASGARD+ directory and run the program by executing the following com-
mand:

$ python asgard-plus.py single --config_file=./config/asgard.ajson

Montero-Vargas
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SUPPORT
PROTOCOL

RESULTS VISUALIZATION WITH PHANDANGO

When executing the ASGARD protocol, results on the presence and absence of antimi-
crobial resistance genes are generated, and two files are created that can be used in the
Phandango tool. This interactive web platform allows the visualization of large-scale ge-
nomics datasets through phylogenetic trees accompanied by different types of metadata
such as recombination blocks, pan-genome contents, or GWAS results (Hadfield et al.,
2018). For this protocol, summarizing complex data is essential in order to facilitate their
exploration and obtain accurate conclusions about the behavior of bacterial populations.

Materials

Hardware

Computer or computational cluster with access to the command-line environment and
internet connection

Files

Files ariba_summary.phandango.csv and ariba_summary.phandango.
tre generated in the execution of the ASGARD protocol

1. Go to the Phandango website at https:// jameshadfield.github.io/phandango/#/ .

2. Drag and drop the ariba_summary.phandango.csv and ariba_
summary.phandango.tre files on the web page

Once the files are uploaded to Phandango, the phylogenetic tree produced by ARIBA will
be displayed and will show the result of the presence or absence of the AMR genes (top)
using color codes (right), where green means “present” and red means “absent” (Fig.
3). From this image, the user can create and include metadata files that generate a more
complex visualization. Phandango also provides multiple examples in its documentation to
improve the visualizations by adding additional metadata files such as genome annotation,
genetic recombination data, or pan-genome data.

3. Select the settings tab at the top of the website to edit the chart configuration and
control the metadata displayed to meet your needs (Fig. 4).

4. Save the visualization result by pressing “p” (Fig. 3)

Once the user has finalized the visualization settings, the image can be exported in SVG
format, which can be opened in any image editing program.

Figure 3 Visualization produced by Phandango. In this case this image was produced comparing
93 sample genomes of Salmonella spp, and the antimicrobial resistance genes on the CARD
database.
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Figure 4 Settings on Phandango visualization. These options control the size of the different
graphics represented in the visualization, and control the metadata displayed.

BASIC
PROTOCOL 4

SAGA EXECUTION

The second protocol of the ASGARD+ platform is SAGA, which implements a pipeline
for the identification of single nucleotide polymorphisms (SNPs) in bacterial genomes
using a reference genome, so that genetic variability between different samples can be
estimated. The pipeline allows entry of the accession number of the reference genome
and accessory reference genomes from the NCBI Entrez Database and retrieval system
(Barrett et al., 2012). The BWA tool (Li & Durbin, 2009) subsequently performs an align-
ment between each of the genomes of the samples of interest and the reference. Each
resulting alignment is sorted and indexed by using Samtools (Li et al., 2009), which
has a series of utilities to manipulate alignments in different formats (SAM, BAM, and
CRAM). Afterwards, BCFtools (Li, 2011) takes the result of the alignments and, through
a series of utilities, calls SNP variants and manipulates the files produced in VCF for-
mat. The SAGA pipeline continues to make a consensus sequence of the SNPs found
in the different samples with respect to their position in the reference genome, and uses
the SNP-sites tool (Page et al., 2016) to efficiently extract the SNPs from the multiple
alignment. Finally, the alignment produced with the SNPs is used to build a phyloge-
netic tree with the RAxML tool (Kozlov, Darriba, Flouri, Morel, & Stamatakis, 2019)
in order to represent the genetic relationship among the different samples. This tree
of SNPs is the final result of this protocol, and can be visualized with the Figtree tool
(http:// tree.bio.ed.ac.uk/software/figtree/ ).

Materials

Hardware

Computer or computational cluster with access to the command-line environment
and internet connection

Software

ASGARD+ and its dependencies installed
WGS data in Fastq format
Configuration file saga.ajson (included when downloading the ASGARD+

repository)
Figtree visualization program installed on its corresponding distribution

1. Edit the specific properties for this protocol in the saga.ajson configuration file:Montero-Vargas
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Figure 5 Figtree visualization tool for displaying the SNPs tree. The program has a top panel for
general management of the tool and the visualization. (A) The File button displays the options for
importing and exporting the results. (B) The control panel at the left of the screen allows the user
to manipulate the general appearance of the tree. In the center of the interface is the visualization
of the tree.

i. reference_accession: This corresponds to the reference genome acces-
sion number from the NCBI database.

ii. accessory_accession: This corresponds to the accessory reference
genome accession number from the NCBI database. This is an optional param-
eter and can be removed if it is not needed.

2. Go to the ASGARD+ directory and run the program by executing the following com-
mand:

$ python asgard-plus.py single --config_file=./config/asgard.ajson
Upon executing this command, the full SAGA workflow will run. The final files produced
by RAxML will be needed in further steps.

3. Visualize SNP tree on figtree.

a. Install the Figtree program from http:// tree.bio.ed.ac.uk/software/figtree/ accord-
ing to the user’s operating system.

b.Open Figtree interactive interface.
c.Go to the “File” button, and open the RAxML_bestTree.consolidated_
aligned_snps_ACCESION_raxml file produced from the execution of the
SAGA protocol (Fig. 5, label A).

The name of the file containing the tree varies for each execution of the protocol, so that in
the nameRAxML_bestTree.consolidated_aligned_snps_ACCESION_raxml,
the word ACCESSION must appear with the identifier or accession number of the refer-
ence genome used.

d.Use the options panel to the right of the page (Fig. 5, label B) to modify or edit the
appearance of the tree, including the layout, the tip, branch and node labels, and
the rooting group.

Montero-Vargas
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e.Export the visualization of the tree by clicking the “File” button (Fig. 5A) and the
Export button according to the desired format.

ALTERNATE
PROTOCOL 1

CONTAINER INSTALLATION

One way that software development has solved installation and configuration problems
has been by using containers. Containers can be viewed as a "standardized unit" of com-
puting. This tool enables the creation of easily replicable configuration files to ensure
the correct operation of a "software stack" across multiple platforms and infrastructures
(Kadri, Sboner, Sigaras, & Roy, 2022). For ASGARD+, Docker was used as the main
tool for the creation of these containers. This allows a simplified and standardized con-
figuration and implementation. In order to follow the new industry standards in soft-
ware development, and in an effort to simplify the setup of the ASGARD+ environment,
a Dockerfile with an automated Basic Protocol 1 can be found in the same repository.
Docker is an open-source platform, so it is free to use and very reliable. This protocol
seeks to guide the installation and configuration process of Docker and its subsystem on
Linux operating systems, specifically on Debian-based distributions.

Materials

Hardware

A multicore processor is not required, but highly advisable since the workload can
be highly compute intensive

A computer with a 64-bit microprocessor; an x86 architecture is recommended
If executed on a computer with a Windows operating system, virtualization

capabilities are required
At least 2 GB of free disk space to store the container image
4 GB of RAM for the Docker engine daemon
An internet connection of at least 10 Mbps

Software

A Debian-based operating system
Administrator access to the operating system

1. Update the apt repository to get the latest version of the required software:

i. $ sudo apt-get update

ii. $ sudo apt-get install ca-certificates curl gnupg lsb-release

2. Execute the next command to get the GPG key to ensure the integrity of the Docker
software.

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --

dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

3. Install the Docker engine and the command-line tool to manage the containers using
the next command:

$ sudo apt-get update && sudo apt-get install docker-ce docker-ce-cli

containerd.io

4. Run the test program to ensure it was installed correctly.

$ sudo docker run hello-world

A “Hello world” message should be printed in your screen

5. To be able to run Docker containers as a non-root user some extra steps are needed,
if this is the case execute the following commands:

i. $ sudo groupadd docker
Montero-Vargas
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This could output the following message “groupadd: group ’docker’ already
exists” which is acceptable.

ii. $ sudo usermod −aG docker $USER

iii. $ sudo service docker restart

6. The user should now be able to run the test without the use of root privileges. Re-Run
the test program to make sure that the user can run it.

$ docker run hello-world

A “Hello world” message should be printed in your screen.

ALTERNATE
PROTOCOL 2

RUN ASGARD AND SAGA IN CONTAINER

If the desired method to run ASGARD+ is by using containers, a small variation in the
execution procedure should be made. The modifications in the configuration file are the
same as in Basic Protocol 2, Basic Protocol 3, and Basic Protocol 4, but the Alternate
Protocol 1 must be executed successfully to continue with this step. This protocol will
take the Dockerfile and create an image of the environment that will build an easily re-
producible environment in which ASGARD+ will run.

Materials

Hardware

A multicore processor is not , but highly advisable since the workload can be
highly compute intensive

At least 4 GB of free RAM memory for the analysis; however, it can make use of
more than 20 GB at a time.

Enough storage space to store the output files; this can range from 1 GB to 150 GB
depending on the number of input files

If executed on a computer with a Windows operating system, virtualization
capabilities are required

An internet connection of at least 10 Mbps to download the databases

Software

A copy of the ASGARD+ repository with the configuration files edited with the
updated paths

The Python environment setup as in the Basic Protocol 1
A simple text editor
Docker engine with user permissions

1. Move to the ASGARD+ directory.

2. Create the image using the following command.

$ docker build. -t asgard-plus

3. Locate the path to the input files and replace the “##” symbols with the path to the
input files.

4. To run the ASGARD pipeline, run the following command:

$ docker run -v /####/####/####/:/asgard/target -it asgard-plus:latest

python asgard-plus.py single --config_file=config/asgard.ajson

5. To run the saga pipeline run the following command:

$ docker run -v /####/####/####/:/asgard/target -it asgard-plus:latest

python asgard-plus.py single --config_file=config/saga.ajson

The output files will be in a new directory created in the same path as the input files.
Montero-Vargas
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COMMENTARY

Background Information
One of the biggest challenges in public

health surveillance today is antibiotic resis-
tance in bacteria responsible for infectious dis-
eases. This problem has been identified by the
World Health Organization as a global health-
care threat, and it is predicted that it could
cause at least 10 million deaths per year by
2050 (Barreiro & Barredo, 2021; Ding & Ya-
shuang, 2021; Shelenkov, 2021). The prob-
lem is aggravated due to the misuse and ex-
cessive use of broad-spectrum antibiotics not
only in the clinical field but also in husbandry,
which is responsible for at least half of the use
of antibiotics (He et al., 2020; Van Boeckel
et al., 2017). Unfortunately, the absorption of
these substances in cattle is low, so around
30% to 90% is excreted into the environ-
ment through feces and urine (Sarmah, Meyer,
& Boxall, 2006; Wang, Dong, Yang, Toor,
& Zhang, 2013; Yue et al., 2021). Residual
antibiotics that are dispersed in the environ-
ment contribute to the health problem by in-
creasing the amount of bacteria that acquire
antibiotic resistance genes, and therefore the
selective pressure that accelerates the devel-
opment of resistance mechanisms (Gilchrist
et al., 2015; Ruan, Yu, & Feng, 2020; Yue
et al., 2021). These molecular mechanisms
for tolerating antimicrobial drugs vary within
and across bacterial species and spread among
themselves rapidly, causing the development
of resistance in many ways (Van Camp et al.,
2020). The constant genetic variation in the
different strains makes bacterial outbreak
surveillance difficult, and although traditional
techniques such as PCR-based genotypic tests,
multi-locus sequence typing (MLST), and
amplification fragment length polymorphism
(AFLP) have provided robust results, they do
not provide information on the mechanisms
of antibiotic resistance acquisition and spread-
ing among microbial communities (Carriço,
Sabat, Friedrich, Ramirez, & ESCMID Study
Group for Epidemiological Markers (ES-
GEM) 2013; Coolen et al., 2021). Nowadays,
the use of genomic epidemiology through
the application of whole-genome sequencing
(WGS) together with bioinformatics data anal-
ysis has facilitated the study of antimicro-
bial resistance on a large scale, allowing ac-
curate, rapid, and cost-effective genotyping of
bacterial isolates and outbreak tracking (She-
lenkov, 2021; Tümmler, 2020). In response to
the increased use of next-generation sequenc-
ing technologies, a large amount of WGS data

has been generated, which in turn has led to
the creation of public databases for microbio-
logical typing where the information collected
from epidemiological studies from all over the
world is concentrated, accelerating the com-
parison and tracking of the different variants
of species with resistance to antibiotics (Car-
riço et al., 2013). In response to the great
availability of data, it has become necessary
to create and standardize software platforms
for the comprehensive analysis of this data.
ASGARD+ was created from the need of a
standardized protocol for the analysis of resis-
tance genes in bacteria and the construction of
phylogenies based on SNPs for the detection
of pathogens of epidemiological significance.
This platform allows analyzing large data sets
of WGS reads in an iterative manner, enabling
efficient and opportune data processing and
providing researchers who have little experi-
ence in the use of bioinformatic protocols with
the ease of generating results efficiently that
can be visualized on platforms, such as Phan-
dango, which can generate descriptive images
of bacteria of epidemiological interest and its
associated metadata in a way that facilitates
the interpretation of data and decision-making
in public health surveillance.

Critical Parameters
Before executing any workflow using

ASGARD+, it is necessary to carry out a pre-
liminary identification and analysis of the re-
quired software tools. To obtain reliable and
repeatable results, it is essential to establish a
stable environment so that both the computer
configuration and software versions used are
standardized in each one of the executions.
The work of creating these environments is
outside the focus of the ASGARD software,
and these details need to be planned in ad-
vance. An alternative solution for this problem
is to use containers (Docker, LXD, Singularity,
etc.) so that there is a normalized environment
in each execution of the workflow.

Troubleshooting
The common errors found when executing

the protocols of the ASGARD+ tool and their
possible solutions are listed in Table 1. It is
suggested to use this as a guide in case of er-
rors in the execution, or to contact the corre-
sponding author.

Understanding Results
ASGARD makes use of the ARIBA tool

to generate a summary of the antimicrobial
Montero-Vargas
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Table 1 Troubleshooting Guide for Installation and Execution of ASGARD+ Platform

Problem Possible cause Solution

The pipeline gets stuck in the
first minutes of execution

The network does not provide
access to the internet

Check the status of the network to which
the computer equipment being used is
connected

Missing output files after
ASGARD+ protocols are
finished

Possible errors with data or
program installation

Review the errors.txt file inside the
output directory in which possible
program failures are recorded. Once the
problem is identified, make the necessary
adjustments, either in the input data or in
the information required in the
configuration files

No output from pipelines. The running environment was
not set up correctly

Make sure the setup scripts were executed
successfully.

Unable to download files from
ARIBA databases

ARIBA is not being actively
maintained, so many
functionalities break without
notice.

Check the availability of these files from
the official ARIBA git and submit a
support ticket to the github. Currently
some community members are providing
quick fixes to the tool.

Message “Found conflicts!
Looking for
incompatible
packages.” from the conda
installation script

Ariba and bowtie2 have very
specific dependency
requirements

Verify the installation scripts are being
run in a conda environment with the
python version set to 3.6

The program outputs “json-
schema.exceptions.
ValidationError:”

This is due to an ill-formatted
configuration file

Check the ASGARD+ repository to
review the required properties of the
AJSON configuration file

The execution time greatly
exceeds the estimated time

The configuration file is not
configured to utilize all the
resources of the platform

Check the number of logical cores present
in the platform and edit the workers
properties in the configuration file.

Error message
“FileNotFoundError:
[Errno No such file]”

The configuration file is not
present in the selected path

Find the ASJON file inside of the
ASGARD+ config directory

Multiple errors related to
libgccng or glibc

Not all the required software are
installed in the OS

If using Linux distributions other than
Ubuntu or Debian, search the packet
equivalent to the ones in the debian-
dependecies.sh script

resistance genes of all the analyzed samples.
This protocol generates three files. The first is
ariba_summary.csv, containing a table
with the results of the resistance genes found
in the samples, according to the database cho-
sen by the user. The file contains one column
for each cluster and one row for each sample,
which may contain "yes" or "no" depending
on the presence or absence of the cluster in
the sample. This file can be viewed in any
spreadsheet program. The other two files,
ariba_summary.phandango.csv and
ariba_summary.phandango.tre.,
contain the results of the analysis to be dis-
played on the Phandango tool. These files can

be dragged and dropped on the online plat-
forms. The resulting visualization allows the
user to observe a phylogenetic tree with the
genomes of the different samples or isolates,
and the presence of AMR genes identified by
ARIBA.

On the other hand, the SAGA protocol
produces as a first result the file acces-
sion.output_file, which contains the
indexed reference genome(s). Next, an align-
ment between the analyzed sequences and the
reference genomes is produced in a SAM file
that is later manipulated with the samtools
tool to change the format to BAM, which
corresponds to a smaller binary file, making Montero-Vargas
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it easier for the software to manipulate the
data efficiently. The BCFtools tool takes the
alignment in .bam format and calls SNPs,
producing a series of intermediate files until
a VCF format file is obtained. This is a text
file that contains a section with metadata
and then a section separated by columns
that include the different variants between
nucleotides and their positions within the
genome compared to the reference sequences.
SAGA then consolidates the SNPs called for
each of the samples, along with the refer-
ences, into a multifasta file. This file is used
as input by the SNP-sites tool, which locates
the position of the variants and produces a
new multiple alignment with the SNPs. This
alignment is used by RAxML to generate a
phylogenetic tree, and as a result various inter-
mediate files are obtained that are necessary
to obtain the best-scoring maximum likeli-
hood tree, which is found in the file called
RAxML_bestTree.consolidated_
aligned_snps_ACCESION_raxml,
where the word ACCESSION is replaced
by the accession number of the reference
genome. This file is used as input in the
Figtree visualization interface, from which a
final version of the tree can be exported in
formats such as PDF, SVG, JPEG, or PNG.

Time Considerations
One of the purposes of ASGARD+ plat-

form is to speed up the process of analyz-
ing big data sets of WGS. Since ASGARD+
makes use of multiple online resources that are
provided by apt, conda, and pip, the installa-
tion and configuration of the environment can
vary greatly depending on the download speed
of the internet connection. The execution of
both ASGARD and SAGA protocols may vary
according to the number of sample sequences
and the species analyzed. One detail to be con-
sidered is that ASGARD execution time is lin-
eal, while SAGA execution time is exponen-
tial. As an example, using a sample size of 93
WGS paired end samples of Salmonella spp.,
the execution of ASGARD takes 22 min, while
SAGA takes 140 min on a server with an In-
tel Xeon E-2286G, which has 12 cores run-
ning at 4 Ghz with 32 Gb of DDR3 memory at
3200 Mhz.

Acknowledgments
The authors thank the National Center for

High Technology (CeNAT), since the devel-
opment of ASGARD+ was carried out on
the Kabré supercomputer, located in this re-
search center. The financing of this project was

possible thanks to the System Funds (FEES)
granted by the National Council of Rectors
(CONARE) of Costa Rica.

Author Contributions
Maripaz Montero-Vargas: conceptu-

alization, data curation, formal analysis,
investigation, methodology, project adminis-
tration, supervision, validation, visualization,
writing original draft; Alex Saenz-Rojas:
conceptualization, formal analysis, investi-
gation, methodology, software, validation,
writing original draft; Marcela Suárez-
Esquivel: data curation, formal analysis,
funding acquisition, investigation, methodol-
ogy, supervision, validation, writing review
and editing; Lizbeth Ramirez-Carvajal: data
curation, formal analysis, funding acquisi-
tion, investigation, methodology, supervision,
validation, writing review and editing.

Conflict of Interest
All authors declare that they have no con-

flicts of interest.

Data Availability Statement
The code that supports the protocol are

openly available in Gitlab for downloading at
https://gitlab.com/CNCA_CeNAT/asgard.

Literature Cited
Barreiro, C., & Barredo, J.-L. (2021). Worldwide

clinical demand for antibiotics: Is it a real count-
down? In E.C. Barreiro & J.-L. Barredo (Eds.),
Antimicrobial therapies: Methods and protocols
(pp. 3–15). Springer US. doi: 10.1007/978-1-
0716-1358-0_1

Barrett, T., Clark, K., Gevorgyan, R., Gorelenkov,
V., Gribov, E., Karsch-Mizrachi, I., … Ostell,
J. (2012). BioProject and BioSample databases
at NCBI: Facilitating capture and organization
of metadata. Nucleic Acids Research, 40(D1),
D57–D63. doi: 10.1093/nar/gkr1163

Carattoli, A., Zankari, E., García-Fernández, A.,
Voldby Larsen, M., Lund, O., Villa, L., … Has-
man, H. (2014). In silico detection and typing of
plasmids using plasmidfinder and plasmid mul-
tilocus sequence typing. Antimicrobial Agents
and Chemotherapy, 58(7), 3895–3903. doi: 10.
1128/AAC.02412-14

Carriço, J. A., Rossi, M., Moran-Gilad, J., Van
Domselaar, G., & Ramirez, M. (2018). A primer
on microbial bioinformatics for nonbioinfor-
maticians. Clinical Microbiology and Infec-
tion, 24(4), 342–349. doi: 10.1016/j.cmi.2017.
12.015

Carriço, J. A., Sabat, A. J., Friedrich, A. W.,
Ramirez, M., & ESCMID Study Group for
Epidemiological Markers (ESGEM). (2013).
Bioinformatics in bacterial molecular epidemi-
ology and public health: Databases, tools
and the next-generation sequencing revolution.

Montero-Vargas
et al.

14 of 16

Current Protocols

https://gitlab.com/CNCA_CeNAT/asgard
http://doi.org/10.1007/978-1-0716-1358-0_1
http://doi.org/10.1007/978-1-0716-1358-0_1
http://doi.org/10.1093/nar/gkr1163
http://doi.org/10.1128/AAC.02412-14
http://doi.org/10.1128/AAC.02412-14
http://doi.org/10.1016/j.cmi.2017.12.015
http://doi.org/10.1016/j.cmi.2017.12.015


Eurosurveillance, 18(4), 20382. doi: 10.2807/
ese.18.04.20382-en

Chen, L., Zheng, D., Liu, B., Yang, J., & Jin, Q.
(2016). VFDB 2016: Hierarchical and refined
dataset for big data analysis—10 years on. Nu-
cleic Acids Research, 44(D1), D694–697. doi:
10.1093/nar/gkv1239

Clausen, P. T. L. C., Aarestrup, F. M., & Lund,
O. (2018). Rapid and precise alignment of raw
reads against redundant databases with KMA.
BMC Bioinformatics, 19(1), 307. doi: 10.1186/
s12859-018-2336-6

Coolen, J. P. M., Jamin, C., Savelkoul, P. H. M.,
Rossen, J. W. A., Wertheim, H. F. L., Mata-
moros, S. P., & van Alphen, L. B. (2021).
Centre-specific bacterial pathogen typing af-
fects infection-control decision making. Micro-
bial Genomics, 7(8), 000612. doi: 10.1099/
mgen.0.000612

Ding, Z., & Ya-shuang, Z. (2021). Applications of
bioinformatics in molecular epidemiology. Chi-
nese Journal of Disease Control & Prevention,
25(1), 20–24. doi: 10.16462/j.cnki.zhjbkz.2021.
01.005

Gilchrist, C. A., Turner, S. D., Riley, M. F., Petri, W.
A., & Hewlett, E. L. (2015). Whole-genome se-
quencing in outbreak analysis. Clinical Micro-
biology Reviews, 28(3), 541–563. doi: 10.1128/
CMR.00075-13

Gupta, S. K., Padmanabhan, B. R., Diene, S. M.,
Lopez-Rojas, R., Kempf, M., Landraud, L.,
& Rolain, J.-M. (2014). ARG-ANNOT, a new
bioinformatic tool to discover antibiotic resis-
tance genes in bacterial genomes. Antimicrobial
Agents and Chemotherapy, 58(1), 212–220. doi:
10.1128/AAC.01310-13

Hadfield, J., Croucher, N. J., Goater, R. J., Abu-
dahab, K., Aanensen, D. M., & Harris, S. R.
(2018). Phandango: An interactive viewer for
bacterial population genomics. Bioinformatics,
34(2), 292–293. doi: 10.1093/bioinformatics/
btx610

He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi,
N., Sun, R., & Alvarez, P. J. J. (2020). An-
tibiotic resistance genes from livestock waste:
Occurrence, dissemination, and treatment. NPJ
Clean Water, 3(1), 1–11. doi: 10.1038/s41545-
020-0051-0

Hunt, M., Mather, A. E., Sánchez-Busó, L., Page,
A. J., Parkhill, J., Keane, J. A., & Harris, S. R.
(2017). ARIBA: Rapid antimicrobial resistance
genotyping directly from sequencing reads. Mi-
crobial Genomics, 3(10), e000131. doi: 10.
1099/mgen.0.000131

Inouye, M., Dashnow, H., Raven, L.-A., Schultz, M.
B., Pope, B. J., Tomita, T., … Holt, K. E. (2014).
SRST2: Rapid genomic surveillance for public
health and hospital microbiology labs. Genome
Medicine, 6(11), 90. doi: 10.1186/s13073-014-
0090-6

Joensen, K. G., Scheutz, F., Lund, O., Hasman, H.,
Kaas, R. S., Nielsen, E. M., & Aarestrup, F.
M. (2014). Real-time whole-genome sequenc-
ing for routine typing, surveillance, and out-
break detection of verotoxigenic Escherichia

coli. Journal of Clinical Microbiology, 52(5),
1501–1510. doi: 10.1128/JCM.03617-13

Kadri, S., Sboner, A., Sigaras, A., & Roy, S.
(2022). Containers in bioinformatics: Applica-
tions, practical considerations, and best prac-
tices in molecular pathology. The Journal of
Molecular Diagnostics, 24(5), 442–454. doi: 10.
1016/j.jmoldx.2022.01.006

Kozlov, A. M., Darriba, D., Flouri, T., Morel,
B., & Stamatakis, A. (2019). RAxML-NG: A
fast, scalable and user-friendly tool for maxi-
mum likelihood phylogenetic inference. Bioin-
formatics, 35(21), 4453–4455. doi: 10.1093/
bioinformatics/btz305

Lakin, S. M., Dean, C., Noyes, N. R., Detten-
wanger, A., Ross, A. S., Doster, E., … Boucher,
C. (2017). MEGARes: An antimicrobial resis-
tance database for high throughput sequencing.
Nucleic Acids Research, 45(D1), D574–D580.
doi: 10.1093/nar/gkw1009

Li, H. (2011). A statistical framework for SNP call-
ing, mutation discovery, association mapping
and population genetical parameter estimation
from sequencing data. Bioinformatics, 27(21),
2987–2993. doi: 10.1093/bioinformatics/btr509

Li, H., & Durbin, R. (2009). Fast and ac-
curate short read alignment with Burrows-
Wheeler transform. Bioinformatics (Oxford,
England), 25(14), 1754–1760. doi: 10.1093/
bioinformatics/btp324

Li, H., Handsaker, B., Wysoker, A., Fen-
nell, T., Ruan, J., Homer, N., … 1000
Genome Project Data Processing Sub-
group. (2009). The sequence alignment/map
format and SAMtools. Bioinformatics (Ox-
ford, England), 25(16), 2078–2079. doi:
10.1093/bioinformatics/btp352

Mäklin, T., Kallonen, T., Alanko, J., Samuelsen,
Ø., Hegstad, K., Mäkinen, V., … Honkela, A.
(2021). Bacterial genomic epidemiology with
mixed samples. Microbial Genomics, 7(11),
000691. doi: 10.1099/mgen.0.000691

Malberg Tetzschner, A. M., Johnson, J. R.,
Johnston, B. D., Lund, O., & Scheutz, F.
(2020). In silico genotyping of Escherichia
coli isolates for extraintestinal virulence
genes by use of whole-genome sequenc-
ing data. Journal of Clinical Microbiology,
58(10), e01269–20. doi: 10.1128/JCM.0126
9-20

McArthur, A. G., Waglechner, N., Nizam, F., Yan,
A., Azad, M. A., Baylay, A. J., … Wright,
G. D. (2013). The Comprehensive Antibi-
otic Resistance Database. Antimicrobial Agents
and Chemotherapy, 57(7), 3348–3357. doi: 10.
1128/AAC.00419-13

Page, A. J., Taylor, B., Delaney, A. J., Soares, J.,
Seemann, T., Keane, J. A., & Harris, S. R. Y.
(2016). SNP-sites: Rapid efficient extraction of
SNPs from multi-FASTA alignments. Microbial
Genomics, 2(4), e000056. doi: 10.1099/mgen.0.
000056

Ruan, Z., Yu, Y., & Feng, Y. (2020). The global
dissemination of bacterial infections ne-
cessitates the study of reverse genomic

Montero-Vargas
et al.

15 of 16

Current Protocols

http://doi.org/10.2807/ese.18.04.20382-en
http://doi.org/10.2807/ese.18.04.20382-en
http://doi.org/10.1093/nar/gkv1239
http://doi.org/10.1186/s12859-018-2336-6
http://doi.org/10.1186/s12859-018-2336-6
http://doi.org/10.1099/mgen.0.000612
http://doi.org/10.1099/mgen.0.000612
http://doi.org/10.16462/j.cnki.zhjbkz.2021.01.005
http://doi.org/10.16462/j.cnki.zhjbkz.2021.01.005
http://doi.org/10.1128/CMR.00075-13
http://doi.org/10.1128/CMR.00075-13
http://doi.org/10.1128/AAC.01310-13
http://doi.org/10.1093/bioinformatics/btx610
http://doi.org/10.1093/bioinformatics/btx610
http://doi.org/10.1038/s41545-020-0051-0
http://doi.org/10.1038/s41545-020-0051-0
http://doi.org/10.1099/mgen.0.000131
http://doi.org/10.1099/mgen.0.000131
http://doi.org/10.1186/s13073-014-0090-6
http://doi.org/10.1186/s13073-014-0090-6
http://doi.org/10.1128/JCM.03617-13
http://doi.org/10.1016/j.jmoldx.2022.01.006
http://doi.org/10.1016/j.jmoldx.2022.01.006
http://doi.org/10.1093/bioinformatics/btz305
http://doi.org/10.1093/bioinformatics/btz305
http://doi.org/10.1093/nar/gkw1009
http://doi.org/10.1093/bioinformatics/btr509
http://doi.org/10.1093/bioinformatics/btp324
http://doi.org/10.1093/bioinformatics/btp324
http://doi.org/10.1093/bioinformatics/btp352
http://doi.org/10.1099/mgen.0.000691
http://doi.org/10.1128/JCM.01269-20
http://doi.org/10.1128/JCM.01269-20
http://doi.org/10.1128/AAC.00419-13
http://doi.org/10.1128/AAC.00419-13
http://doi.org/10.1099/mgen.0.000056
http://doi.org/10.1099/mgen.0.000056


epidemiology. Briefings in Bioinformatics,
21(2), 741–750. doi: 10.1093/bib/bbz010

Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A.
(2006). A global perspective on the use, sales,
exposure pathways, occurrence, fate and effects
of veterinary antibiotics (VAs) in the environ-
ment. Chemosphere, 65(5), 725–759. doi: 10.
1016/j.chemosphere.2006.03.026

Shelenkov, A. (2021). Whole-genome se-
quencing of pathogenic bacteria—new
insights into antibiotic resistance spread-
ing. Microorganisms, 9(12), 2624. doi:
10.3390/microorganisms9122624

Simar, S. R., Hanson, B. M., & Arias, C. A.
(2021). Techniques in bacterial strain typing:
Past, present, and future. Current Opinion in
Infectious Diseases, 34(4), 339–345. doi: 10.
1097/QCO.0000000000000743

Tümmler, B. (2020). Molecular epidemiology
in current times. Environmental Microbiology,
22(12), 4909–4918. doi: 10.1111/1462-2920.
15238

Van Boeckel, T. P., Glennon, E. E., Chen, D.,
Gilbert, M., Robinson, T. P., Grenfell, B. T., …
Laxminarayan, R. (2017). Reducing antimicro-
bial use in food animals. Science, 357(6358),
1350–1352. doi: 10.1126/science.aao1495

Van Camp, P.-J., Haslam, D. B., & Porollo, A.
(2020). Bioinformatics approaches to the un-
derstanding of molecular mechanisms in an-

timicrobial resistance. International Journal of
Molecular Sciences, 21(4), 1363. doi: 10.3390/
ijms21041363

Wang, H., Dong, Y., Yang, Y., Toor, G. S., & Zhang,
X. (2013). Changes in heavy metal contents in
animal feeds and manures in an intensive ani-
mal production region of China. Journal of En-
vironmental Sciences, 25(12), 2435–2442. doi:
10.1016/S1001-0742(13)60473-8

Yue, Z., Zhang, J., Zhou, Z., Ding, C., Wan, L.,
Liu, J., … Wang, X. (2021). Pollution charac-
teristics of livestock faeces and the key driver of
the spread of antibiotic resistance genes. Jour-
nal of Hazardous Materials, 409, 124957. doi:
10.1016/j.jhazmat.2020.124957

Zankari, E., Hasman, H., Cosentino, S., Vester-
gaard, M., Rasmussen, S., Lund, O., … Larsen,
M. V. (2012). Identification of acquired antimi-
crobial resistance genes. The Journal of Antimi-
crobial Chemotherapy, 67(11), 2640–2644. doi:
10.1093/jac/dks261

Internet Resources
https://gitlab.com/CNCA_CeNAT/asgard
Gitlab repository and documentation for

ASGARD+.

https://jameshadfield.github.io/phandango/#/
Phandango web platform.

http://tree.bio.ed.ac.uk/software/figtree/
Figtree download.

Montero-Vargas
et al.

16 of 16

Current Protocols

http://doi.org/10.1093/bib/bbz010
http://doi.org/10.1016/j.chemosphere.2006.03.026
http://doi.org/10.1016/j.chemosphere.2006.03.026
http://doi.org/10.3390/microorganisms9122624
http://doi.org/10.1097/QCO.0000000000000743
http://doi.org/10.1097/QCO.0000000000000743
http://doi.org/10.1111/1462-2920.15238
http://doi.org/10.1111/1462-2920.15238
http://doi.org/10.1126/science.aao1495
http://doi.org/10.3390/ijms21041363
http://doi.org/10.3390/ijms21041363
http://doi.org/10.1016/S1001-0742(13)60473-8
http://doi.org/10.1016/j.jhazmat.2020.124957
http://doi.org/10.1093/jac/dks261
https://gitlab.com/CNCA_CeNAT/asgard
https://jameshadfield.github.io/phandango/#/
http://tree.bio.ed.ac.uk/software/figtree/

