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Ecosystems are under a multitude of pressures, including land-use change,
overexploitation, pollution, and climate change. Most studies, resources, and
conservation efforts are allocated to protected areas, while anthropogenic
activities in their surroundings may affect them in ways that are poorly
understood. We evaluated soundscape structure in forests surrounded by
protected or productive areas in central Costa Rica. We sampled soundscapes
in 91 recording sites in Grecia Forest Reserve and Poas Volcano National Park, and
surrounding areas with productive activities (predominantly agricultural and
urban). We classified sampling sites into three clusters according to landscape
entropy, forest amount, and fragmentation surrounding recording points: more
fragmented, more conserved, and intermediate. The conserved cluster showed
higher acoustic diversity or entropy, but lower acoustic complexity, shorter
duration of sounds in all frequency ranges, and lower amount of energy in the
biological frequency bands than the fragmented cluster. We additionally found a
positive significant relationship between the amount of forest and acoustic
entropy or diversity indices, but a negative relationship with acoustic activity or
energy indices. Indices, such as spectral and temporal entropy, the entropy of
spectral variance, and total entropy, seemed to be a better fit than acoustic
complexity and bioacoustic indices as indicators of habitat conservation in this
study. Acoustic indices revealed that the surrounding matrices of protected areas
have an impact on acoustic environments. We encourage researchers and
decision-makers to carefully interpret acoustic indices when evaluating
habitats showing a higher value in acoustic energy or activity because this
might not necessarily reflect either a high level of biodiversity or habitat
conservation. Also, we highlight the importance of preserving undisturbed
forested matrices around protected areas, as they are important for
maintaining acoustic diversity.
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1 Introduction

Ecosystems are under a multitude of pressures, including land use change,
overexploitation, pollution, and climate change (Glaser 2015). As conservation measures,
a series of protected areas have historically been established, which usually act as islands of
protection in a matrix with different degrees of anthropogenic alteration. Most research,
resources and conservation efforts are allocated to protected areas, while anthropogenic
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activities that take place in their surroundings, impact on them in
ways that are poorly understood and managed.

Costa Rica has over 25% of its territory under some category of
management within the system of conservation areas (Noches,
2005). These areas play an important role in the conservation of
species and global processes (Pimm et al., 2018). But despite these
initiatives and efforts to conserve forests, the change in land use and
the overexploitation of its products as a result of population growth,
still threaten their conservation (Maxwell et al., 2020). Some authors
have suggested the need to assess complementary conservation
strategies that also contribute to minimizing the problem of
isolation of existing protected areas, such as the protection of
wooded pastures, forest plantations, living fences, agroforestry
systems, and even isolated fragments of natural or managed
forest (Naoki et al., 2003).

The central conservation area (ACC), declared as a Biosphere
Reserve, shelters 25 protected wild areas and has more than
250,000 ha of forests, which play a fundamental role in
protecting biodiversity. In this area there is great biological
diversity, the types of vegetation vary from tropical rain forest,
low montane rain forest; to the subalpine pluvial or paramo of
stunted vegetation in the Irazú Volcano. Currently, threats such as
deforestation, hunting, the degradation of hydrographic basins, the
expansion of agricultural frontiers and fragmentation due to urban
expansion are present in the area. These activities generate
significant pollution and exert strong pressure on protected wild
areas (SINAC 2014). Other sources of pollution, such as noise,
emerge with urbanization. Noise contributes to the degradation of
ecosystems and affects wildlife, modifying the behavior and
movement patterns of some species (Barber et al., 2011;
Pijanowski et al., 2011).

Protected wilderness areas provide values associated with the
appreciation of nature, both visual and acoustic, that can be
exploited, as in the case of ecotourism, where the acoustic quality
of the landscape is an essential element for visitors seeking sites free
of noise (Farina et al., 2011). In tropical forests, high biodiversity
contributes to a high diversity of natural sounds, so it is important to
quantify the impact of the effects of human activity, in relation to
sound, on wildlife (Pijanowski et al., 2011; Rodríguez et al., 2014).
The loss of habitats and biodiversity causes the disappearance of
natural sounds; that is why they must be managed as a natural
resource that must be conserved (Pijanowski et al., 2011).

There is a constant need to consider the effect of anthropogenic
activities on natural areas and surroundings as a possible source of
ecosystem degradation and subsequent threat to biodiversity. It is
important to conserve important sectors of land for protection, but
at the same time manage the matrix surrounding the protected areas
in order to minimize the negative impact of productive activities on
them. For this, it is important to have effective monitoring
mechanisms that can provide early warning of problems
associated with ecosystem degradation in the surroundings of
protected areas that could serve as a basis for decision-making
and actions aimed at complying with environmental regulations in
force in the country by the competent authorities and in agreement
with the local stakeholders.

A variety of ecological methods and indicators have been used to
assess the impacts of the anthropic activity on biodiversity and
habitat conservation. However, one of the greatest challenges in

conservation ecology and biology is the assessment of biodiversity
through effective monitoring techniques, which allow covering wide
spatial and temporal scales (Depraetere et al., 2012). This knowledge
should be the basis for building more robust criteria that lead to
better management of the territory, through a centralized
monitoring system that allows researchers and decision-makers
to have a good general perspective on the results obtained by
monitoring programs on a national scale (Marsh and Trenham
2008). For example, cost-efficient techniques have been proposed to
automatically collect large amounts of data at larger ecological and
spatial scales, such as the recording of sounds to represent and
quantify complete acoustic landscapes through a series of acoustic
indices. These indices can be used for biodiversity assessments,
research on community dynamics and landscape patterns (Sueur
et al., 2014) since acoustic landscapes reflect the biophysical
properties of the landscape, as well as the communication
mechanisms between organisms, and they can function as an
indicator of the state of biodiversity and ecosystems (Pijanowski
et al., 2011).

Ecosystem sounds create an acoustic landscape composed of
acoustic periodicities and frequencies emitted by biophysical entities
of the ecosystem (Schafer 1977; Truax et al., 1984; Qi et al., 2008),
which can be partitioned into anthropic (anthrophony), biological
sources (biophony) and physical (geophony). The proportion
between these different components of the acoustic landscape
gives us an indication of the impact of the anthropic activity on
ecosystems (Napoletano 2004; Qi et al., 2008; Joo et al., 2011;
Pijanowski et al., 2011). In addition, there is another series of
acoustic indices that estimate the level of complexity in terms of
time, frequency, or amplitude of the sound (Sueur et al., 2014),
which have been related to traditional biodiversity indices (Sueur
et al., 2008; Farina et al., 2011; Depraetere et al., 2012; Gasc et al.,
2013; Rodríguez et al., 2014; Pieretti et al., 2015; Trigg 2015;
Machado et al., 2017; Mammides et al., 2017; Retamosa Izaguirre
et al., 2018; Retamosa Izaguirre et al., 2021a; Retamosa Izaguirre
et al. et al., 2021b).

We evaluated soundscape structure in forests surrounded by
protected and productive (agricultural and urban) activities as an
indicator of habitat conservation in central Costa Rica. In general,
we expected that more conserved sites (landscapes with less entropy,
larger size of forested patches, and less fragmented forest) would
have a higher acoustic diversity and activity, as well as a higher
proportion of biophonies than antrophonies. We discuss the use of
acoustic indices as an early indicator of habitat conservation
associated with productive activities in the surroundings of
protected areas, as a tool to support decision-making and achieve
conservation goals.

2 Methods

2.1 Study area

The Central Conservation Area (ACC) is located in the central
region of the country, where it incorporates the entirety of the great
metropolitan area (Silhouettes, 1987). Due to its location and urban
development, it covers approximately 54% of the Costa Rican
population in an area of 860 8000 ha, equivalent to 16.84% of the
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country’s area (SINAC 2014). Within its delimitation 31 protected
areas are included in this conservation area.

The study was carried out in the northwestern region of the
ACC, covering the protected areas of the Grecia Forest Reserve
and the southern sector of the Poás Volcano National Park and its
surroundings. The Grecia Forest Reserve is located
approximately 14 km north of the city of Grecia and is
bordered to the north by the Poás National Park (Leandro
et al., 2016). It has an area of 2,000 ha with an elevation range
between 1,600 and 2,500 m above sea level, which includes both
areas of native vegetation and cypress and pine plantations
(Maglianesi 2010). The average precipitation is 3600 mm per
year, and it maintains an average temperature of 16 °C (Leandro
et al., 2016). For its part, the Poás Volcano National Park is
characterized by high rainfall with an annual rainfall that varies
between 3,500 and 8,000 mm and a temperature that oscillates
between 10 and 24 °C with an average of 14 °C (Boza 2001). Most
of the protected area is covered by forests except places burned by
volcanic eruptions, tourist areas and deforested areas. The
canopy can generally reach up to 30 m in height, however it
usually does not exceed 20 m. The understory is dense and most
of the trees are covered with epiphytic plants such as mosses,
bromeliads, orchids and ferns (González et al., 2019).

2.2 Landscape structure sampling

To sample the landscape structure around recording points,
we overlaid a grid of 250 by 250 m over the study area and
calculated 11 landscape metrics (Table 1) for those cells where
recording sites were located. These landscape metrics were
selected according to the effect reported in the literature on

biodiversity (such as species richness, distribution, the
abundance of populations, and genetic diversity, among
others; Fahrig 2003), in addition to representing different
aspects of interest to describe landscape conservation. We
performed this analysis using ArcGIS (ESRI 2016) and
landscapemetrics package (Hesselbarth et al., 2019) for R (R
Core Team 2020).

2.3 Acoustic sampling

We sampled soundscapes in 91 recording sites in Grecia
Forest Reserve and Poas Volcano National Park, and
surroundings areas with productive activities (predominantly
agricultural and urban). All recording sites were located in
forest patches of at least 10 ha, inside or no more than 3 km
away from protected areas (Figure 1).

We used Song Meter Digital Field Recorders (SM2 +;
Wildlife Acoustics Inc, Supplementary Appendix S1) to
sample soundscapes. Two omnidirectional microphones were
placed in each recorder, so the recording would be made through
two channels, or in stereo. A sampling rate or frequency rate of
44.1 kHz and 16 bits’ resolution were used. Audio files were
recorded in Microsoft Wave (.wav) format. Audio files were
stored on 64 GB capacity SDHC memory cards. At each
recording site, the equipment was fixed to the trees at an
approximate height of 1.50 m. The recorders were
programmed to make continuous recordings during peaks of
bird activity (4:00 a.m. - 7:00 a.m. and 15:00 p.m. - 18:00 p.m.),
and for periods of 10 min every half an hour during the rest of
the day. Acoustic recorders were active for a total of four to six
consecutive days during the period July 2019 to June 2020.

TABLE 1 Landscape metrics used to describe landscape structure surrounding recording sites in the Central Conservation Area of Costa Rica, 2019–2020.

Metric Description

Marginal Entropy Ent Represents the diversity of spatial categories, it is calculated as the marginal entropy of the distribution (Nowosad and
Stepinski, 2019)

Relative Mutual Information Relmutinf Spatial autocorrelation causes the value of mutual information to increase with landscape diversity (marginal entropy). This
can be corrected by calculating the relative mutual information, which results from the ratio between the mutual information
and the marginal entropy. The relative mutual information ranges from 0 to 1 and allows comparison of spatial data with
different numbers and distribution of categories (Nowosad and Stepinski, 2019)

Farmland Cover (ha) Farmland Area covered by agricultural lands in each cell of the grid

Forest Cover (ha) Forest Area covered by forest in each cell of the grid

Urban Cover (ha) Urban Area covered by urban areas in each cell of the grid

Number of Patches NumP Total number of patches in each cell of the grid (McGarigal and Marks, 1995)

Area Weighted Mean Shape Index AWMSI AreaWeightedMean Shape Index in each cell of the grid adjusted for shape size. A measure of shape complexity. It is the same
as Mean Shape Index with the addition of individual patch area weighting applied to each patch. MSI is greater than one,
MSI = 1 when all patches are circular (polygons) or square (grids). MSI = sum of each patches perimeter divided by the square
root of patch area (hectares) for each class (Class Level) or all patches (Landscape Level) and adjusted for circular standard
(polygons), or square standard (grids), divided by the number of patches (McGarigal and Marks, 1995)

Mean Patch Size (m2) MPS Average patch size in each cell of the grid (McGarigal and Marks, 1995)

Mean Patch Edge MPE Average patch edge in each cell of the grid McGarigal and Marks, 1995)

Distance to roads dist.roads Distance to the nearest road

Distance to rivers dist.rivers Distance to the nearest river

Frontiers in Remote Sensing frontiersin.org03

Retamosa Izaguirre and Barrantes Madrigal 10.3389/frsen.2023.1051555

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2023.1051555


2.4 Statistical analysis

2.4.1 Cluster analysis with landscape metrics
We ran a K-means cluster analysis (Hartigan & Wong Algorithm,

1979) to classify grid cells into clusters according to the landscapemetrics
described in Table 1. We selected the K-means method because it is one
of the most used in this type of analysis and it has proven good results
(Benocci et al., 2022). We specifically used marginal entropy (ent),
relative mutual information (relmutinf), Farmland cover (Farmland),
Forest cover (Forest), Urban cover (Urban), Mean Patch Edge (MPE),
Number of patches (NumP), Area weight mean shape index (AWMSI)
and Mean Patch Size (MPS) as classification variables (Table 1). We did
not use the variables distance to roads and distance to rivers because this
would have incorporated a spatial influence in the analysis and led to
grouping the grid cells by their proximity rather than by the
characteristics of the surrounding matrix. All variables were scaled to
have mean = 0 and sd = 1. The optimal number of clusters was defined
using the silhouette index (Rousseeuw, 1987).

2.4.2 Preselection of acoustic indices
Recordings were processed to obtain a series of 38 acoustic indices

(Table 2) for every one-minute audio segment using packages
Soundecology, version (1.3.3) (Villanueva-Rivera & Pijanowski,
2018) and Seewave, (version 2.0.5) (Sueur et al., 2008) for R (R
Core Team 2020), and additional code developed by the Buxton
et al. (2018). To reduce the number of indices for analysis, we
evaluated the acoustic indices according to their performance to
discriminate between clusters of grid cells classified using landscape
variables. We ran a random forest classification model (Breiman 2001)
using the median per hour and per cell of the grid of acoustic indices as

explanatory variables to classify each grid cell into clusters. The
percentage of importance of each index in the classification process
was taken as a criterion to select acoustic indices for further analysis.We
also eliminated the acoustic indices that were redundant or highly
correlated and kept the indices that had demonstrated good
performance as ecological indicators in other studies (Buxton et al.,
2018; Eldridge et al., 2018; Ross et al., 2021). We finally reduced the set
to 19 acoustic indices (Table 3), which represent a different
characteristics of the sound, including entropy and acoustic diversity
(ADI, AEI, Hf, Ht, TE, HvSPL, Hm), acoustic activity (ACI, AAdur,
AAduranth, roughness), acoustic energy (BIO, NP, dif_L10L90,
msldBA_low,MAE, mdBGL, NDSI) and dominant frequencies (dfreq).

We used the median per hour and per cell of the grid of every
acoustic index for all analyses to avoid extreme values that may have
occurred during a one-minute segment and to improve analysis
performance. We manually listened and reviewed two recorders per
site, for a total of 69331 min, labeling periods of heavy rain. We used
this information to train a Random Forest model to predict the
occurrence of heavy rain every minute according to the selected
acoustic indices (Breiman 2001). Minute files containing heavy rain
were not considered for further analyses.

2.4.3 Analysis of acoustic indices according to
cluster created by the landscape metrics analysis

For evaluating the behavior and contrasting acoustic indices by
clusters, we fitted generalized linear mixed-effects models using
Template Model Builder (Brooks et al., 2017) using the median per
hour and per cell of the grid of every acoustic index as the response
variable while cluster, time (hour of the day), and the interaction between
both, as fixed effects. The recorder ID was used as a random effect.

FIGURE 1
Study area in the Central Conservation Area of Costa Rica, 2019–2020.
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TABLE 2 Acoustic indices run initially for each sampling point in the Central Conservation Area of Costa Rica, 2019–2020.

Acoustic indices Name Reference

AA Acoustic activity (2000–11000 Hz) Townsey et al. (2014)

AAanth Acoustic activity (0–2000 Hz) Townsey et al. (2014)

AAc Count of acoustic events (2000–11000 Hz) Townsey et al. (2014)

AAcanth Count of acoustic events (0–2000 Hz) Townsey et al. (2014)

AAdur Duration of acoustic events (2000–11000 Hz) Townsey et al. (2014)

AAduranth Duration of acoustic events (0–2000 Hz) Townsey et al. (2014)

ACI Acoustic Complexity Index Pieretti et al. (2011)

ADI Acoustic Diversity Index Villanueva-Rivera et al. (2011)

AEI Acoustic Evenness Index Villanueva-Rivera et al. (2011)

AthPh Antrophony Joo et al. (2011)

avgAMP Average signal amplitude Townsey et al. (2014)

BIO Bioacustic Index Boelman et al. (2007)

Bio_anth Ratio of biophony to anthrophony Buxton et al. (2018)

BioPh Biophony Joo et al. (2011)

dfreq Average Dominant Frequency -

dif_L10L90 Difference in exceedance levels Buxton et al. (2018)

Hf Spectral Entropy Townsey et al. (2014)

Hm Entropy of spectral maxima Townsey et al. (2014)

Ht Temporal Entropy Townsey et al. (2014)

HvPress Entropy of spectral variance Townsey et al. (2014)

HvSPL Entropy of spectral variance (dB) Townsey et al. (2014)

L10AMP L10 exceedance level Buxton et al. (2018)

MAE Median Amplitude Envelope Depraetere et al. (2012)

Mamp Median sound level Buxton et al. (2018)

mdBGL Median background level Buxton et al. (2018)

msldB_bio Mean sound level with dB (2000–11000 Hz) Buxton et al. (2018)

msldB_low Mean sound level with dB (0–2000) Buxton et al. (2018)

msldBA_bio Mean sound level with dBA 2000–11000 Hz) Buxton et al. (2018)

msldBA_low Mean sound level with dBA (0–2000) Buxton et al. (2018)

NDSI Normalized Difference Soundscape Index Kasten et al. (2012)

NP Number of Peaks Gasc et al. (2013)

NumCL Spectral diversity Towsey et al. (2014)

Pk Peak frequency Buxton et al. (2018)

pkd Spectral kurtosis Bormpoudakis et al. (2013)

pks Spectral skewness Bormpoudakis et al. (2013)

Roughness Roughness Rychtáriková and Vermeir (2013)

SP2 Spectral persistence Towsey et al. (2014)

TE Total Entropy Towsey et al. (2014)
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2.4.4 Analysis of dominant frequencies by cluster
We analyzed the dominance of each 1 kHz frequency band from

0–11 kHz according to clusters. Frequencies below 500 Hz were
discarded to avoid bias in the dominant frequencies due to the self-
noise of the recorder. Therefore, the first frequency band consisted of
frequencies between 0.5–1 kHz. We performed generalized linear

mixed-effects models (Maglianesi, 2016) for each frequency band
using the hourly median of the number of times each frequency
band was dominant as the response variable. The explanatory
variables cluster, the hour of the day, and the interaction between
the two were considered fixed effects. Recorder ID was taken as a
random effect. The model also incorporated a zero-inflated formula,

TABLE 3 Description of acoustic indices calculated for each sampling point in the Central Conservation Area of Costa Rica, 2019–2020.

Acoustic indices Code Description

Acoustic Complexity Index ACI Measures the variability of sound intensity over time and frequency [9]. Higher values indicate more complex
soundscapes. Range = [0, +]

Acoustic Diversity Index ADI Summarizes sound intensity distribution applying the Shannon index over the proportion of signals above an
intensity threshold across the spectrum [10]. Higher values indicate that acoustic energy is spread evenly across
frequency bands. Range = [0, +]

Acoustic Evenness Index AEI Same as the ADI, but the Gini index is applied across all frequency bins, instead of the Shannon index [10]. High
values indicate acoustic energy is restricted to a narrow frequency range. Range = [0, 1]

Bioacoustic Index BIO It is a function of both amplitude and number of occupied frequency bands between 2–11 kHz. It is calculated as
the area under each curve included all frequency bands between 2–11 kHz associated with the dB value that was
greater than the minimum dB value for each curve. Higher values indicate greater disparity between bands [15].
Range = [0, +]

Median Amplitude Envelope MAE The median of the amplitude envelope normalized by the maximum value to give results between 0–1. Higher
values reflect noisier soundscapes [18]. Range = [0, 1]

Normalized Difference Soundscape Index NDSI The ratio (biophony − anthrophony)/(biophony + anthrophony). Where biophony is the energy on the frequency
range 2–8 kHz and anthrophony between 1 and 2 kHz [11]. Higher values indicate a higher proportion of acoustic
energy in the biophony band. Range = [-1, 1]

Number of Peaks NP Counts the number of major frequency peaks obtained on a mean spectrum. Higher values indicate a greater
frequency spectral complexity [14]. Range = [0, +]

Spectral Entropy Hf Divides intensity values by the sum of intensity in a frequency band. Calculates the entropy for these values using
the negative sum of each value multiplied by the log of the value and divided by the log of the number of intensity
values [3]. Higher values indicate evenly distributed sound across frequency bands. Range = [0, 1]

Temporal Entropy Ht Divide the intensity values by the sum of intensities in a time interval. Calculates entropy for these values using the
negative sum of each value multiplied by the log of the value and divided by the log of the number of intensity
values [3]. Higher values indicate evenly distributed sound over time. Range = [0, 1]

Total Entropy TE It is the product of Hf * Ht. Quantifies the entropy across time and frequency [3]. Higher values indicate evenly
distributed sounds across frequency and time. Range = [0, 1]

Entropy of spectral variance (dB) HvSPL It measures the entropy in the variance of the sound pressure values of each frequency band. High values indicate
evenness in the distribution of acoustic activity (modulations) across the frequency spectrum. Low values indicate
that the acoustic activity is concentrated in few frequency bands. Theoretically, high values indicate greater activity
and acoustic diversity distributed throughout the spectrum or a very flat or quiet signal

Entropy of spectral maxima Hm It quantifies the entropy in the distribution of dominant frequencies through time. High values indicate little
dominance; energy distributed throughout the spectrum. Low values indicate dominance of a frequency band
(usually insects)

Duration of acoustic events
(2000–11000 kHz)

AAdur Estimates the average duration of sounds above the background noise threshold in each frequency band. High
values indicate domain of signals of longer duration, low values indicate short pulses

Duration of acoustic events (0–2000 kHz) AAduranth Estimates the average duration of sounds above the background noise threshold in each frequency band. High
values indicate domain of signals of longer duration, low values indicate short pulses

Difference in exceedance levels dif_L10L90 Calculates the difference between the sound pressure level that bound the 10% of the largest values and the 10% of
the smallest values. The resulting value is representative of the variation in the sound pressure level in the analyzed
time interval. High values indicate the presence of strong signals

Roughness roughness Indicates the median change in acoustic energy from one time frame to the next in an audio segment. High values
correspond to audios with greater acoustic activity, generally related to greater biological activity

Average Dominant Frequency dfreq Indicates the average dominant frequency

Mean sound level with dBA (0–2000) msldBA_low Converts values of sound pressure level (dB) to pressure values (linear scale), takes the average pressure of the
values of all frequency bands in a time interval (1 min), and converts it back to sound pressure levels (dB)

Median background level mdBGL Provides a measure of the median background noise level. Noisier sites have a higher value
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since the dominant frequency values hadmany zeros (for example, in all
the minutes where a frequency band was not dominant). We first fitted
models using Poisson distribution because the values of the dependent
variable are integers (they represent counts of times in which the
frequency band was dominant for every one-minute audio segment).
However, this distribution generated an overdispersion, so a negative
binomial distribution was finally used.

2.4.5 Modeling the relationship of acoustic indices
with landscape metrics

We analyzed the relationship between acoustic indices and
landscape metrics (ent, Forest, dist.rivers, dist.roads, NumP and

MPE; Table 1). We did not used in this analysis other landscape
metrics because they were highly correlated.

We performed generalized linear mixed-effects models to
analyze the relationship between each acoustic indices and
landscape variables. Models were fitted using the median per
hour and per cell of the grid of every acoustic index as the
response variable, the landscape metrics as independent fixed
effects, and the recorder as a random effect. We included an
autoregressive covariance structure (AR1) for hour of the day to
account for potential temporal autocorrelation. Acoustic indices
outliers were removed before analysis. Landscape metrics were
standardized to improve model convergence.

FIGURE 2
K-means cluster classification of sampling cells in the Central Conservation Area of Costa Rica, 2019–2020.

FIGURE 3
Geographic distribution of recording sites according to cluster classification created by the landscape metrics analysis.
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We fitted NDSI, Hf, Ht, TE, MAE, Hm and HvSPL indices
with beta error structure; NDSI was transformed before the
analysis to convert its values between 0–1 using the formula
(NDSI +1)/2 (Fairbrass et al., 2017). ACI, BIO, AAdur,
AAduranth, dif_L10L90, roughness and dfreq were fitted using
a gamma structure and log link function; ADI, msldBA_low and

mdBGL with a Gaussian structure; and NP with a negative
binomial structure as it is a count variable. Models were built
using the R package glmmTMB (Brooks et al., 2017) and
assumptions were checked using DHARMa package (Hartig,
2022).

2.4.6 Aural detection of biophonies and
anthrophonies

A thorough review of the audio from 13 recorders was carried
out aurally. We reviewed 10 min every half hour from 5:00 a.m. to
6:00 p.m. for three consecutive days in each recorder. The audios
were searched for acoustic events, such as biophonies and
anthrophonies, using the Adobe Audition program for
listening and visualization. Biophonies were classified into
taxonomic groups of birds, insects, amphibians, and
mammals. We registered the duration in time (seconds) of
each category of acoustic events for each hour of the day. We
then summarized all categories into their mean and standard
error per hour for comparison among clusters.

The distribution of the selected recorder was three from
cluster 1, two from cluster 2, and eight from cluster 3. We
used only birds and insects in the biophony category because
mammals and amphibians were underrepresented in audio
recordings.

FIGURE 4
Mean values of the landscape variables for every cluster in the Central Conservation Area of Costa Rica, 2019–2020. Black lines represent the 95%
confidence interval for the mean calculation. Y-axes represent the value of the scaled variable, where 0 represents the global mean for all values.

TABLE 4 Center values for every cluster and 95% confidence intervals in the
Central Conservation Area of Costa Rica, 2019–2020.

Variable Cluster 1 Cluster 2 Cluster 3

Ent 0.745 ± 0.32 0.299 ± 0.21 0.64 ± 0.12

Relmutinf 0.414 ± 0.13 0.465 ± 0.17 0.418 ± 0.05

Farmland cover (%) 0.474 ± 0.11 0.001 ± 0.001 0.476 ± 0.023

Forest cover (%) 0.517 ± 0.11 0.998 ± 0.001 0.951 ± 0.023

Urban cover (%) 0.009 ± 0.014 0.0002 ± 6 × 10-4 0.0009 ± 0.001

MPE (m) 225.49 ± 33.19 572.42 ± 97.90 279.16 ± 22.06

NumP 20.50 ± 3.25 2.64 ± 0.50 9.89 ± 1.29

AWMSI 2.332 ± 0.18 1.30 ± 0.11 1.81 ± 0.086

MPS (m) 3186.99 ± 509.9 28186.26 ± 7398 7587.52 ± 984.16
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3 Results

3.1 Cluster analysis with landscape metrics

The cluster analysis classified the sites into tree clusters (Figures
2, 3). Cluster 1 was characterized by more farmland and less forest
cover, higher patch shape complexity, a higher number of patches,
and the total edge. Cluster 2 and cluster 3 did not differ markedly
regarding the amount of forest, however, cluster 2 presented more
forest and less farmland cover than cluster 3. In addition, cluster
2 presented a lower number of patches, total edge, and patch shape
complexity than the other clusters. Marginal entropy and relative
mutual information did not differ between clusters (Figure 4;
Table 4).

3.2 Analysis of acoustic indices by cluster

To facilitate the interpretation, we present the results of the
models showing the contrast between acoustic indices by cluster
according to three categories of acoustic indices: 1) acoustic entropy
and diversity indices (ADI, AEI, Hf, Ht, Hm, HvSPL, and TE) 2)
acoustic activity or events indices (ACI, roughness, AADur,

AADuranth, and NP), and 3) summary of acoustic energy
indices (BIO, dif_L10L90, msldBA_low, MAE, mdBGL, NDSI
and dfreq). In general, we observed a higher variability in all
acoustic indices in cluster 1 than in clusters 2 and 3 (Figures 5–7).

3.2.1 Acoustic entropy and diversity indices
There was a general tendency, although statistically non-

significant, of higher entropy or diversity in clusters 2 and 3 than
in cluster 1, being more noticeable between clusters 2 and 1 in the
afternoon hours. Following the opposite pattern, a lower AEI value
(meaning a higher acoustic evenness) was detected in clusters 2 and
3 than in cluster 1. Besides, cluster 1 presented less variation in the
variance of the energy among frequency bands than in clusters 2 and
3 (Figure 5).

3.2.2 Acoustic activity or events indices
There was a general tendency, although statistically non-

significant, for a longer duration of sounds above the background
noise threshold in each frequency band in cluster 1 than in clusters
2 and 3, both for the range of frequencies events between
0–2000 kHz and 2000–11000 kHz. On the other hand, acoustic
complexity seemed to be higher in cluster 1 than in clusters
2 and 3; a contrasting result with roughness, given that both

FIGURE 5
Results of the models showing the contrast between acoustic indices by cluster for the entropy and acoustic diversity type of indices in the Central
Conservation Area of Costa Rica, 2019–2020.
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indices depict similar information about the acoustic activity. But, in
general, none of the indices showed strong differences among
clusters (Figure 6).

3.2.3 Summary of acoustic energy indices
As shown by BIO values, biological frequency bands in cluster

1 contained a higher amount of energy than cluster 2 during the day,
although statistically non-significant for most hours, except at 6 a.m.
The difference was not so notorious between clusters 1 and 3. This
was reflected also in NDSI values, showing a higher proportion of
acoustic energy in the biophony band in cluster 1 than in clusters
3 and 2, although less noticeable between clusters 2 and 3. Moreover,
NDSI values were statistically significantly higher in cluster 1 than in
cluster 3 at 6 a.m., 9 a.m., and from 2 p.m. to 5 p.m. There was a
notorious increase in NDSI values in all clusters at 5 p.m. (Figure 7).

There also was a statistically non-significant tendency of higher
dif_L10L90 values in cluster 1 than in clusters 3 and 2, which
indicated the presence of stronger signals in cluster 1 than in the
other clusters. A similar tendency was seen in the average dominant
frequency, being higher (although statistically non-significant) in
cluster 1 than 3 and 2 (Figure 7).

3.3 Analysis of dominant frequencies by
cluster

The distribution of dominant frequencies between clusters was
variable during the day (Figure 8). Low frequencies, from 0–1 kHz, were
more dominant in cluster 2 than cluster 1 during all day, but only

statistically significant at 17:00 p.m. The dominance of frequency bands
between 1–4 kHzwas similar in all clusters, except frequency band from
2–3 kHz, what was more dominant in cluster 1 than the other clusters,
especially during the morning. Frequencies at intermediate level, from
4–7 kHz, were more dominant in cluster 1 than clusters 2 and 3. Mid-
high frequency bands, from 7–9 kHz, presented a similar dominance
across the three clusters. Higher frequencies, from 9–11 kHz, showed
higher dominances in cluster 2 than the other clusters, what was most
noticeable during the afternoon (Figure 8).

3.4 Modeling the relationship of acoustic
indices with landscape metrics

Landscape metrics had different effects on acoustic indices.
Forest cover and distance to rivers were the variables that had a
significant effect over more acoustic indices, followed by entropy
(ent) and the number of patches (NumP). Distance to roads
(dist.roads) and Mean patch edge (MPE) did not have a
significant effect on any of the acoustic indices evaluated
(Table 5; Supplementary Appendix S2).

There was a positive significant relationship between the
amount of forest and acoustic entropy and diversity indices.
However, sites with a higher amount of forest seemed to
present a negative relationship with acoustic activity/events or
acoustic energy summary type of indices. Accordingly, the higher
the entropy at the landscape level, the lower the acoustic entropy,
but the higher the acoustic activity/events (Table 5;
Supplementary Appendix S2).

FIGURE 6
Results of the models showing the contrast between acoustic indices by cluster for the activity or acoustic events type of indices in the Central
Conservation Area of Costa Rica, 2019–2020.
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However, there was a negative relationship between the number
of patches at the landscape level and acoustic energy summary
indices. Distance to rivers also behaves in a counterintuitive way
regarding acoustic indices, because the longer the distance from
rivers, the higher acoustic diversity or entropy, as well as the
duration and strength of signals (Table 5; Supplementary
Appendix S2).

3.5 Aural detection of biophonies and
anthrophonies

The mean duration (seconds) of biophonies per hour was
higher in cluster 1 all day, followed by cluster 3 and cluster 2. This
pattern was consistent when we analyzed only the sound
produced by birds. The results for insects were similar
between clusters in the morning, but cluster 2 and cluster
3 showed higher mean duration (seconds) of biophonies from
insects in the afternoon. On the other hand, the mean duration
(seconds) of anthrophonies was higher in the morning (5:
00 a.m.-10:00 a.m.) and at 4:00 p.m. and 5:00 p.m. in cluster
1 than in the other clusters (Figure 9).

4 Discussion

Our study sites were classified according to a series of landscape
metrics reflecting forest amount and fragmentation around the
recording points, resulting in a more fragmented cluster (cluster
1), a more conserved cluster (cluster 2), and an intermediate cluster
(cluster 3). We expected that more conserved sites would have, in
general, greater acoustic diversity and activity, as well as a higher
proportion of biophonies than antrophonies. The results were
partially under these predictions. For example, we did find that
there was a general tendency for higher acoustic entropy or diversity
type of indices (for example Hf, Ht, Hm, HvSPL, and TE) in
conserved (clusters 2 and 3) than in fragmented sites (cluster 1).
Consequently, more conserved sites showed higher acoustic
diversity, i.e. acoustic energy was more evenly distributed
throughout the entire frequency spectrum. Moreover, more
conserved sites presented more variation in the variance of the
energy among frequency bands. These findings may reflect a higher
diversity of species producing sounds in more conserved sites. Other
authors have suggested that acoustic production might increase in
diversity with different individuals and species vocalizing, resulting
in more diverse acoustic communities in highly diverse

FIGURE 7
Results of the models showing the contrast between acoustic indices by cluster for the summary of acoustic energy indices type of indices in the
Central Conservation Area of Costa Rica, 2019–2020.
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FIGURE 8
Distribution of dominant frequencies between clusters during the day in the Central Conservation Area of Costa Rica, 2019–2020.

TABLE 5 Acoustic indices with a positive or negative statistically significant effect on each landscape variable in the Central Conservation Area of Costa Rica,
2019–2020.

Variable Significant negative effect Significant positive effect

Forest AAdur, AAduranth, ACI, BIO, dfreq, dif_L10L90, NDSI Ht, HvSPL, roughness, TE

ent Ht, roughness, HvSPL AAdur, ACI

NumP ACI, dfreq, dif_L10L90, NDSI -

MPE - -

dist.roads - -

dist.rivers AEI, BIO, mdBGL AAdur, AAdurant, ADI, dif_L10L90, Hf, Hm
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communities in terms of the number of species and individuals
(Sueur et al., 2014).

However, the opposite and unexpected pattern was found for
acoustic activity (for instance ACI, AAdur, and Aaduranth) or
summary of acoustic energy type of indices (BIO, NDSI, and dif_
L10L90). For example, more conserved sites tended to present lower
acoustic complexity, shorter duration of sounds above the
background noise threshold for the range of frequencies events
between 0–2 kHz and 2–11 kHz, and lower amount of energy in the
biological frequency bands during the day. NDSI also followed the
same pattern, given the relationship with the previous indices (BIO).

We additionally found a positive significant relationship
between the amount of forest and acoustic entropy or diversity
type of indices. However, sites with a higher amount of forest
seemed to present a negative relationship with acoustic activity
or energy type of indices. Moreover, the higher the entropy at the
landscape level, the lower the acoustic entropy, but the higher the
acoustic activity or energy. These results are consistent with other
studies conducted by our group in the tropics (Retamosa Izaguirre
et al., 2018; Retamosa Izaguirre et al., 2021a; Retamosa Izaguirre
et al. et al., 2021b), providing support to our notion that, in the
tropics, acoustic indices such as ACI and BIO seem to be indicating
acoustic activity or energy rather than acoustic diversity, behaving as
a weak or incomplete indicator of biodiversity or habitat
conservation. In this sense, one or a few species with persistent
vocal activity can result in high values of ACI or BIO, although the
site might not be highly diverse or well conserved. However, acoustic
entropy or diversity indices, such as Hf, Ht, HvSPL, and TE, might
be more suitable to represent biodiversity and habitat conservation.
In accordance, Do Nascimento et al. (2020) found that different
habitat types had unique and predictable soundscapes; specifically,
Ng et al. (2018) found a significant correlation between AEI, ADI,
and H with a BioCondition Score that discriminated among
woodland condition types, and Fuller et al. (2015) reported that
AEI, H, and NDSI best reflected the soundscape with landscape
characteristics, ecological condition, and bird species.

Consistently, the aural detection of biophonies showed that the
mean duration in seconds of biophonies per hour was higher in
cluster 1 (more fragmented) throughout the day, followed by cluster
3 (intermediate) and lastly cluster 2 (more conserved). These results
were driven by birds, which replicated the same general pattern as
biophonies. As indicated by other authors (Temple andWiens, 1989;
Niemi et al., 1997; Campos-Cerqueira et al., 2020), birds might not
be the best indicator of habitat conservation, given the great
plasticity and variety of life histories found in this group. There
usually are some bird species that can take advantage of, or even
benefit from, a certain degree of habitat alteration (Carrara et al.,
2015). For instance, younger forests usually present a high
environmental heterogeneity at horizontal and vertical levels
(MacArthur and MacArthur, 1961), providing a variety of niches
for some opportunistic species, or a mixture of species with different
habitat requirements. Other authors have even indicated that forests
at earlier stages of succession maintain a greater dynamic of food
production than mature forests (Flores and Dezzeo, 2005), which
may help increase the variety of species guilds inhabiting them
(Almazán-Núñez et al., 2009). We highlight the importance of
including other groups, for example, amphibians or insects as
indicators of habitat conservation, or even using other
parameters that measure behavior, activity, and overall condition
or reproductive success for some selected wildlife species.

Regarding the mean duration (seconds) of anthrophonies, it
was higher in the morning (5:00 a.m.-10:00 a.m.) and at 4:00 p.m.
and 5:00 p.m. in cluster 1 (more fragmented) than in the other
clusters. This is congruent with regular commercial activity,
including the transit of service vehicles transporting goods
and services, which tends to be more intense in the morning
hours (Halfwerk et al., 2018). Besides, the peak in anthrophonies
at 4:00 p.m. and 5:00 p.m. in cluster 1 might be associated with
the transit of people returning home from regular-hour jobs.
However, and how it was observed before, these changes in
anthrophonies were not reflected in the NDSI index, given the
higher energy in the biophony range detected in cluster 1, which

FIGURE 9
Distribution per hour of themean time in one-minute segments occupied by biophonies (B1), birds (B2), insects (B3), and anthrophonies (B4) in every
cluster. Lines represent 95% confidence intervals for the mean.
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also increased NDSI values. Nevertheless, both measures depict
different information.

NDSI values reflect the ratio of the amount of energy between
antrophony and biophony bands, while with the aural detection we
measured themean timewhere only anthrophonies were found on each
one-minute segment of audio, regardless of the amount of energy.
Therefore, if the anthrophonies had low energy, even if they were
reflected in the aural analysis, they would not affect the NDSI index.

On the other hand, we found higher dominant frequencies in the
more conserved and forested cluster (cluster 2), while intermediate
frequencies dominated in the fragmented cluster (cluster 1). This
might be due to the presence of species with persistent or loud
vocalizations, resulting in dominant mid-frequencies in cluster 1 at
specific periods, such as dawn and dusk, where the contrast in
dominant frequencies between clusters was more noticeable. This
idea is supported by the fact that we did not find evidence of higher
acoustic diversity in cluster 1. Conversely, acoustic diversity seemed
to be higher in cluster 2. Moreover, we suggest that conserved sites
might be more acoustically diverse but quieter or with species less
vocally active than fragmented sites.

Acoustic indices, as well as traditional indices in ecology, have
the advantage of summarizing ecological information, but at the
expense of not taking into account the composition of ecological
communities (Izsák & Papp 2000). For this reason, we recommend
combining information from acoustic indices with more specific
acoustic or ecological information from selected species, that may
serve as indicators of the pattern and process under investigation.
However, acoustic entropy or diversity indices did behave well as
indicators of habitat conservation or condition in this, as well as
other studies (Fuller et al., 2015; Ng et al., 2018; Bradfer-Lawrence
et al., 2020; Do Nascimento et al., 2020).

On a final note, the lack of statistical power to detect differences
in acoustic indices among clusters might be due partially to the fine-
scale landscape variability surrounding sampling sites. However, on
a broad scale, sites were located mostly inside, near, or connected to
big forest fragments included in protected areas (Volcan Poas
National Park and Grecia Forest Reserve). Moreover, Costa Rica
has conducted strong efforts to implement environmental services
payment initiatives (Brownson et al., 2020), that in association with
a strong ecotourism culture in the country, might have helped to
maintain forest patches in the matrices around protected areas
(Hunt & Harborpro 2019; Beita et al., 2021).

In conclusion, acoustic indices revealed that the surrounding
matrices of protected areas have an impact on acoustic
environments. Although disturbed environments with less-
forested and more fragmented matrices registered higher values
of acoustic energy and activity in certain biological frequency bands,
sites with a higher percentage and more continuous forest cover
showed higher values of acoustic entropy and diversity, reflecting a
more diverse acoustic community. Given this pattern, we emphasize
to researchers and decision-makers to carefully interpret acoustic
indices when evaluating disturbed ecosystems showing a high value
in acoustic energy or activity, because this might not accurately

reflect a more biodiverse or conserved habitat. Finally, we highlight
the importance of preserving undisturbed habitats with forested
matrices, as they are important for maintaining acoustic diversity.
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