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Abstract

Epidemiological surveillance systems for pathogens in wild species have been proposed as

a preventive measure for epidemic events. These systems can minimize the detrimental

effects of an outbreak, but most importantly, passive surveillance systems are the best

adapted to countries with limited resources. Therefore, this research aimed to evaluate the

technical and infrastructural feasibility of establishing this type of scheme in Costa Rica by

implementing a pilot program targeting the detection of pathogens of zoonotic and conser-

vation importance in wildlife. Between 2018 and 2020, 85 carcasses of free-ranging verte-

brates were admitted for post-mortem and microbiology analysis. However, we

encountered obstacles mainly related to the initial identification of cases and limited local

logistics capacity. Nevertheless, this epidemiological surveillance scheme allowed us to

estimate the general state of health of the country’s wildlife by establishing the causes of

death according to pathological findings. For instance, 60% (51/85) of the deaths were not

directly associated with an infectious agent. Though in 37.6% (32/85) of these cases an

infectious agent associated or not with disease was detected. In 27.1% (23/85) of the cases,

death was directly related to infectious agents. Furthermore, 12.9% (11/85), the cause of

death was not determined. Likewise, this wildlife health monitoring program allowed the

detection of relevant pathogens such as Canine Distemper Virus, Klebsiella pneumoniae,

Angiostrongylus spp., Baylisascaris spp., among others. Our research demonstrated that

this passive surveillance scheme is cost-effective and feasible in countries with limited

resources. This passive surveillance can be adapted to the infrastructure dedicated to moni-

toring diseases in productive animals according to the scope and objectives of monitoring
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wildlife specific to each region. The information generated from the experience of the initial

establishment of a WHMP is critical to meeting the challenges involved in developing this

type of scheme in regions with limited resources and established as hotspots for emerging

infectious diseases.

Introduction

Zoonotic diseases directly threaten public health systems, generating costs in medical treat-

ment, outbreak control, and overloading health systems. In addition, it generates significant

losses due to the slaughter of livestock and the affectation of other domestic animals [1,2].

Examples of how these diseases can impact public health, animal health, and wildlife have been

the recent outbreaks of yellow fever and West Nile virus, which show the need to have the

infrastructure and diagnostic capacity to ensure constant surveillance of potentially zoonotic

agents [3,4].

Wildlife populations act as reservoirs and can play various roles in the epidemiology of

numerous pathogens [5–7]. These roles assign to wildlife the important function of sentinels

of the health of ecosystems and allow early detection of environmental alterations and the dis-

tribution, re-emergence, or emergence of certain pathogens in a specific region [8,9].

Tropical regions are among the areas of most extraordinary natural diversity with a con-

comitant high diversity of pathogens and, thus, a high potential for disease emergence [10,11].

Moreover, this risk has increased drastically because of anthropogenic pressures linked to

over-exploitation of natural resources and increased land use change, increasing the possibility

of contact between wildlife, domestic animals, and humans [12,13].

One of the preventive strategies against the risk of epidemic events promoted by the World

Organization for Animal Health (OIE) and the World Health Organization (WHO) is to

increase the efforts to establish early detection mechanisms for pathogens, of both zoonotic

and conservation importance, via Wildlife Health Monitoring Programs (WHMP) [14–16].

One of the first steps to knowing the health status of the wildlife in a region is monitoring

through passive surveillance, which identifies the causes of mortality in a range of species

based on their pathological profiles through post-mortem examinations. This approach offers

advantages like cost-effectiveness and the ability to carry out convenience samplings, taking

advantage of the established infrastructure and diagnostic capacity. Furthermore, when these

schemes are set in the long term, it has been shown that they provide the core information for

decision-making and the establishment of policies, norms, and strategies, prioritizing disease

prevention, even when the sampling is biased and with incomplete geographic coverage [17–

20].

In Latin America have been made some significant efforts to improve epidemiological sur-

veillance systems aimed at animal health. Some national programs are installed and function-

ing perfectly where wild animals are used as sentinels to monitor specific diseases [21,22].

However, there are still no monitoring programs for the general health status of wildlife, mak-

ing clear the need to optimize and expand the coverage of these schemes [23,24]. For example,

according to the U.S. Department of Agriculture, Costa Rica has the infrastructure and main-

tains adequate surveillance programs to detect and control zoonotic diseases in livestock [25].

However, it does not contemplate local wildlife within its scheme as it should [26].

Several pathogens, such as zoonotic parasites, vector-borne infectious agents, and direct

transmission viruses, have been identified in Costa Rican wildlife [27–38]. This evidence

reflects the urgency of establishing a permanent WHMP, where aspects such as general health
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status and monitoring of zoonotic pathogens in wildlife are considered, facilitating knowledge

of the ecoepidemiology of these agents at the local level.

Countries with limited resources, such as Costa Rica, face severe financial and logistical

restrictions in monitoring the health and circulation of pathogens in wildlife. Nevertheless, in

the short term must extend the coverage of this type of program to tropical regions. Therefore,

this research aims to evaluate the technical and infrastructural feasibility of establishing this

type of scheme in Costa Rica by implementing a pilot program for passive epidemiological sur-

veillance of wildlife. Although we encountered obstacles such as a lack of data collection legis-

lation and a willingness to cooperate among agencies, our research demonstrated the logistical

capacity and that it is possible to adapt the established infrastructure to implement this pro-

gram. Furthermore, this allowed wild animal carcasses to be analyzed, detecting zoonotic path-

ogens and pathogens of conservation importance.

Material and methods

Statement of ethics

All samples were obtained from dead wildlife (found dead in the field or euthanized after vet-

erinary care in specialized centers). The study was approved by the Ministry of Environment

and Energy (MINAE) (wildlife authority) through permits (R-SINAC-PNI: -ACAT-040,

ACAHN-18, ACTo-022, ACT-OR-DR-43, ACG-026, ACLAC-039, ACLAP-023, ACOPAC-

005, ACC-037), and with the support of the animal health authority, the National Animal

Health Service through the office (SENASA-DG-0277-18).

WHMP schema proposal and case definition

For the implementation of a WHMP, a passive epidemiological surveillance scheme was pro-

posed adapting the current country’s technical diagnostic resources and infrastructure. To cre-

ate a network for detecting dead and diseased wild animals, officials from the wildlife

management centers and officials from wildlife authorities reported cases and voluntarily sent

specimens. Officials were encouraged to send complete carcasses from free-ranging vertebrates

after death due to any associated disease or trauma, both found dead in the field or deceased in

management centers. Carcasses of animals that remained more than 48 hours in the manage-

ment centers before death, received medication, or were frozen for more than a week were

excluded from the study. The proposed WHMP scheme is shown in Fig 1.

Basic information was requested and registered for every sample submission: geographic

location, the standard and scientific name of the animal, clinical signs, and any information

considered relevant to the case, following the scheme recommended by the OIE for the notifi-

cation of cases for disease surveillance system in wild animals [16,39]. All carcasses were

shipped under refrigerated conditions at 2–8˚C.

Pathological analysis

The carcasses received were classified by autolysis degree according to an established scale of

one to five [40]. Thus, ranging from a fresh carcass or recently dead animal (grade 1) to

advanced decomposition (grade 4) and partial, mummified carcasses or skeletal remains

(grade 5). Only carcasses with grades 1 to 3 were included in the study for post-mortem analy-

sis and tissue sampling [41]. Therefore, 96 specimens were received, of which 85 were admitted

to the study. Specimens were divided by sex and age according to the development of sexual

organs and phenotypic characteristics of the species. Also, they were divided by taxonomic

order.
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All morphological findings were recorded. In addition, tissue samples were taken for rou-

tine histopathological and microbiological analysis as required. Tissue samples for histopathol-

ogy were processed based on standard routing protocols [41].

Detection of different infectious agents

Virus detection. Molecular methods were used to detect different viral agents. All molec-

ular methods were done in the presence of positive and negative controls. The samples ana-

lyzed were fresh tissues collected sterile during post-mortem analysis. In addition, we

performed RNA extraction using the commercial kit DNeasy Blood and Tissue (QIAGEN,

Venlo, The Netherlands), following the manufacturer’s recommendations. The methods used

and the samples collected are specified in Table 1.

Detection of protozoan parasites‘. Confirmation was performed using molecular tech-

niques for pathogen identification when a previous presumptive protozoa presence was estab-

lished in the histopathological study. All molecular methods were done in the presence of

positive and negative controls. Tissue samples previously embedded in paraffin were used for

this purpose. The deparaffinization procedure was done using xylol washes following the

method recommended to perform DNA extraction from the tissue [57]. We performed DNA

extraction using the commercial kit DNeasy Blood and Tissue (QIAGEN, Venlo, The Nether-

lands) according to the manufacturer’s instructions. The methods used and the samples col-

lected are specified in Table 1.

Bacteriological detection. Tissue samples from animals with inflammatory processes

(suppurative or abscesses) were cultured following standard bacteriological procedures. For

bacterial isolation, samples were inoculated on non-selective and selective agar media.

Fig 1. Pilot WHMP work scheme design proposal. DVM-MC: Doctor of veterinary medicine of wildlife management centers; MC: Wildlife management

centers; PD: Pathology Department of Escuela de Medicina Veterinaria, Universidad Nacional.

https://doi.org/10.1371/journal.pone.0262063.g001
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Table 1. Molecular techniques for the detection of viral agents and protozoa.

Infectious agent Target region Method Primer Sequence Reference protocol Used

material

Canine Distemper

Virus (CDV).

N gene Nested

RT-PCR

First round:

CDV-1F

5’- ACT GCT CCT GAT ACT GC-3’ Da Budaszewski et al.,

2014. [42]

Tissuea

CDV-2R 5’- TTC AAC ACC RAC YCC C-3’
Second round:

CDV-3F

5’- ACA GRA TTG CYG AGG ACY
TRT-3’

CDV-4R 5’- CAR RAT AAC CAT GTA YGG
TGC-3’

Alphaviruses. nsP4 Nested

RT-PCR

First round:

–

5’- TTT AAG TTT GGT GCG ATG
ATG AAG TC-3’ (500 nM)

Grywna et al., 2010. [43] Tissuea

5’- GCA TCT ATG ATA TTG ACT
TCC ATG TT-3’ (500 nM)

Second round:

–

5’-GGT GCG ATG ATG AAG TCT GGG
ATG T-3’ (200nM)
5’- CTA TGA TAT TGA CTT CCA
TGT TCA TCC A-3’ (100 nM)
5’-CTA TGA TAT TGA CTT CCA TGT
TCA GCC A-3’ (100 nM)

Flaviviruses. NS5 gene Semi-nested

RT-PCR

First round:

MAMD

5’- AAC ATG ATG GGR AAR AGR
GAR AA-3’

Scaramozzino et al.,

2001. [44]

Tissuea

cFD2 5’-GTG TCC CAG CCG GCG GTG TCA
TCA GC-3’

Second round:

FS 778

5’-AAR GGH AGY MCD GCH ATH TGG
T-3’

cFD2 5’-GTG TCC CAG CCG GCG GTG TCA
TCA GC-3’

Avian Influenza virus

(AI).

matrix (M) gene qRT-PCR M + 25 5’-AGA TGA GTC TTC TAA CCG AGG
TCG-3’

Spackman et al., 2002.

[45]

Tissue and

swab b

M 124 5’-TGC AAA AAC ATC TTC TTC AAG
TCT CTG-3’

M + 64 5’-FAM-TCA GGC CCC CTC AAA
GCC GA-TAMRA-3’

Rabies virus. Nucleoprotein RT–PCR RAB504 5’-TAT ACT CGA ATC ATG AAT GGA
GGT CGA CT-3’

Primers: Oliveira et al.

2010. [46]

Protocol:

Carnieli et al. 2008 [47]

Tissuec

RAB304 5’-ACG CTT AAC AAC AAR ATC ARA
G-3’

Newcastle virus. Fusion gene, F0 RT-PCR NCD3 5’-GTC AAC ATA TAC ACC TCA TC-
3’

STAUBER, 1995. [48] Tissue and

swab b

NCD4 5’-GGA GGA TGT TGG CAG CAT T-3’
Toxoplasma gondii. 529bp repetitive

segment

PCR Tox-8 5’-CCC AGC TGC GTC TGT CGG
GAT-3’

Homan et al., 2000. [49]

Reischl et al., 2003. [50]

FFPEd

Tox-11 5’-GCG TCG TCT CGT CTA GAT CG-
3’

Trypanosoma cruzi. 18S rRNA gene Nested PCR First round:

SSU4_F

5’-GTG CCA GCA CCC GCG GTA AT-
3’

First round primer:

Pinto et al., 2015. [51]

Second round primer:

Noyes et al., 1999. [52]

Protocol: Aleman et al.,

2017. [53]

Murphy & O’Brien,

2007.[54]

FFPEe

18Sq1R 5’-CCA CCG ACC AAA AGC GGC CA-
3’

Second round:

SSU561F

5’-TGG GAT AAC AAA GGA GCA-3’

SSU561R 5’-CTG AGA CTG TAA CCT CAA
AGC-3’

(Continued)
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Significant bacterial growth was identified using the automated VITEK-2 Compact system,

software version 8.02 (bioMérieux, Marcy l’Etoile, France). VITEK test cards for Gram-nega-

tive [GN], Gram-positive [GP], and anaerobes [ANC] were used for identification according

to the manufacturer’s instructions.

Identification of metazoan parasites. All the parasites in the carcasses were collected and

washed with physiological saline, preserved in alcohol, acetic acid, and formalin (AFA) solu-

tion. No more than one week after collection, they underwent identification to the genus level

through morphometric characteristics [58]. Physical and morphometric characteristics were

recognized after fixation and clarification with Hoyer’s solution by light microscopy [59–61].

In addition, processed cestodes were stained with dilute Harris’ hematoxylin solution.

Information management, geocoding, and spatial analysis

The information on each case was included in the epidemiological surveillance information

system (SIVE) from the animal health authority. Each case was geocoded using the latitude

and longitude generated by GPS of the point where the specimen was found by field personnel.

When the GPS was unavailable, they were geocoded using the latitude and longitude of the

approximate location where they were found, and this was generated by Google Earth Pro v7.3

(2021, Google Inc.). With the georeferenced points of each sample admitted created a map

using ArcGIS 10.7 (ERSI), according to territorial division by conservation area: Arenal Hue-

tar Norte Conservation Area (ACAHN); Arenal Tempisque Conservation Area (ACT); Central

Conservation Area (ACC); Guanacaste Conservation Area (ACG); La Amistad Caribe Conser-

vation Area (ACLAC); La Amistad Pacı́fico Conservation Area (ACLAP); Osa Conservation

Area (ACOSA); Pacı́fico Central Conservation Area (ACOPAC); Tempisque Conservation

Area (ACT); Tortuguero Conservation Area (ACTo). Additionally, a feedback report was sent

to the field staff with the relevant findings per case.

Results

Participation in the WHMP and distribution of cases by age, sex, and

taxonomic classification

The notification of cases was made by officials from the wildlife authority, with 24.7% (21/85)

of the cases and 75.3% (64/85) by officials from wildlife management centers. Only four man-

agement centers reported and sent cases for analysis. The conservation areas with the most

Table 1. (Continued)

Infectious agent Target region Method Primer Sequence Reference protocol Used

material

Leishmania spp. Kinetoplast PCR 13A 5’- GTG GGG GAG GGG CGT TCT-3’ Medeiros et al. 2002.

[55]

Sosa-Ochoa et al. 2015.

[56]

FFPEf

13B 5’-ATT TTA CAC CAA CCC CCA
GTT-3’

FFPE: Formalin-fixed paraffin-embedded.
a brain and lung.
b Lung and Trachea tissue and cloacal swab.
c hippocampus, cerebellum, and medulla oblongata.
d spleen, lung, and liver.
e heart.
f spleen.

https://doi.org/10.1371/journal.pone.0262063.t001
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significant participation in the WHMP were the same ones where the participating wildlife

management centers were located. The geographical location of the management centers,

diagnostic laboratory, and cases analyzed is shown in Fig 2. The conservation areas where

there was no participation are those located furthest from the diagnostic laboratory and with

significant obstacles for shipment, as mentioned in Table 2.

Of the 85 specimens admitted to the study, there was an age distribution of 27.1% (23/85)

young animals and 72.9% (62/85) adults. The sex distribution was 56.5% (48/85) males and

43.5% (37/85) females. According to the taxonomic order, we received 29.4% (25/85) Carniv-

ora, 29.4% (25/85) Primate, 12.9% (11/85) Pilosa, 5.9% (5/85) Didelphimorphia, 4.7% (4/85)

Rodentia, 4.7% (4/85) Artiodactyla, 2.3% (2/85) Cingulate, 2.3% (2/85) Pelecaniformes, 2.3%

(2/85) Accipitriformes, 2.3% (2/85) Anseriformes, 1.2% (1/85) Ciconiiformes, 1.2% (1/85)

Piciformes and 1.2% (1/85) Coraciiformes. The geographical distribution of admitted cases by

conservation area is shown in Fig 2.

Identification of causes of death according to pathological findings

According to pathological findings, the distribution of the presumptive cause of death corre-

sponded to 60% (51/85) of death not associated with an infectious agent. Of these, 54.1% (46/

85) associated with traumatic events (mainly roadkill and electrocution), 2.4% (2/85) with a

degenerative disease, and in 3.5% (3/85) of cases, death was presumptively associated with

intoxication. Additionally, of individuals with a cause of traumatic death, 37.6% (32/85)

Fig 2. Geocoding of the cases analyzed by conservation area. The number corresponds to the cases analyzed in each

conservation area. Wildlife management centers shown are those that collaborated with the WHMP.

https://doi.org/10.1371/journal.pone.0262063.g002
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concomitantly presented some infectious agent with or without an associated disease (24 with

gastrointestinal and pulmonary metazoan parasites, three with bacteria, one with protozoa,

and four with multiple microorganisms). In 27.1% (23/85) of cases, death was directly related

to infectious agents, ten presented lesions associated with viruses, five with metazoan parasites,

two with protozoan parasites, one with bacteria, and five presented lesions associated with

multiple etiologies. In 12.9% (11/85) of cases, the cause of death was not determined. The abso-

lute and relative values of the causes of death for each taxonomic group according to the pres-

ence of infectious agents are specified in Table 3.

Infectious agents detected in the WHMP

Ten viruses, seven protozoa, and seven bacteria were identified in mammalian specimens. In

22 cases, these pathogens were involved with lesions or systemic disease, of which 19 were

directly associated with the cause of death of mammals. Only Sarcocystis spp. detected in two

cases was an incidental finding. Additionally, 38 mammals had metazoan parasites. Multi-par-

asitosis was observed in 15.3% (13/85) of the cases. Parasites such as Prosthenorchis spp.

(n = 15), Angiostrongylus spp. (n = 6), and Cilycospirura spp. (n = 1) were responsible for

severe parasitosis with systemic disease. Some of the lesions, such as pyogranulomatous absces-

sing bronchopneumonia and nodular and sclerosing gastritis associated with infectious agents,

are observed in Fig 3 (see legend). In 50.6% (43/85) of the cases, the mammals presented infec-

tious agents with a zoonotic potential, such as Klebsiella pneumoniae, Toxoplasma gondii,
Angiostrongylus spp. The etiological agents identified by taxonomic groups and the number of

specimens analyzed are specified in Table 4.

All birds submitted were evaluated for virus presence (n = 9); two of these were positive for

flaviviruses. Additionally, three birds had metazoan parasites. Most of the pathogens identified

were directly associated with the cause of the death of birds. Only Procyrnea spp. identified in

one case was an incidental finding. In 2.3% (2/85) of the cases, the birds presented infectious

Table 2. Participation in the WHMP of detectors of cases and obstacles found in each conservation area.

Conservation

area

Number of

cases

Cases detector Obstacles to sending cases

Wildlife

Officer

MC

ACAHN 3 0 3 Inability to store. Coordination problems with the health agency for the transport of specimens. Few rescue

centers motivated to participate.

ACAT 6 0 6 Coordination problems with the wildlife agency to submit specimens.

ACC 27 6 21 No significant obstacles.

ACG 11 7 4 Coordination problems with the health agency for the transport of specimens.

ACLAC 0 0 0 Few rescue centers motivated to participate. Coordination problems with the wildlife agency to submit

specimens. Coordination problems with the health agency for the transport of specimens. Distant from the

diagnostic laboratory.

ACLAP 0 0 0 There are no rescue centers in the region. Coordination problems with the wildlife agency to submit

specimens.

ACOSA 0 0 0 There are no rescue centers in the region. Distant from the diagnostic laboratory.

ACOPAC 23 0 23 Coordination problems with the wildlife agency to submit specimens.

ACT 12 5 7 Few rescue centers in the region. Inability to store

ACTo 3 3 0 There are no rescue centers in the region. Insufficient field staff. Coordination problems with the health

agency for the transport of specimens.

ACAHN: Conservation area Arenal Huetar Norte; ACT: Conservation area Arenal Tempisque; ACC: Conservation area Central; ACG: Conservation area Guanacaste;

ACLAC: Conservation area La Amistad Caribe; ACLAP: Conservation area La Amistad Pacifico; ACOSA: Conservation area Osa; ACOPAC: Conservation area pacific

central; ACT: Conservation area Tempisque; ACTo: Conservation area Tortuguero.

https://doi.org/10.1371/journal.pone.0262063.t002
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Fig 3. Infectious agents in lesions identified in wild animals. A) Lung (Alouatta palliata-howler monkey). Lymphoplasmacytic pneumonia with the presence

of tissue cyst, morphology compatible with Toxoplasma gondii, confirmation by PCR (arrowhead; H&E 600x). B) Lung (Alouatta palliata-howler monkey).

Pyogranulomatous abscessing bronchopneumonia with intralesional bacteria Klebsiella pneumonia, confirmation by culture (arrowhead; H&E 200x). C) Brain

(Didelphis marsupialis-opossum). Presence of nematode Angiostrongylus spp. identified by morphology (arrowhead; H&E 400x). Inset: Nematode

magnification (H&E 200x). D) Lung (Cebus imitator-white-faced monkey). Bronchopneumonia associated to multiple Nematodes, Filariopsis spp. identified

by morphology (more cuts of the female in microphotograph) (arrowhead; H&E 40x). E) Stomach (Herpailurus yagouaroundi-jaguarundi). Nodular and

sclerosing gastritis associated with multiple Cylicospirura spp. Nematodes identified by morphology (arrowhead; H&E 40x). F) Skin (Sphiggurus mexicanus-
porcupine) Pyogranulomatous and eosinophilic dermatitis associated with massive infestation of Sarcoptex spp. (arrowhead; H&E 400x). Inset: Mites

magnification (H&E 100x).

https://doi.org/10.1371/journal.pone.0262063.g003

Table 3. Absolute and relative values of the causes of death for each taxonomic group.

Cause of Death / Taxon DAIA DNAIA-PD DNAIA-IAD DNAIA UD

Mammals

Carnivora 40% (10/25) 28% (7/25) 16% (4/25) 8% (2/25) 8% (2/25)

Primate 32% (8/25) 36% (9/25) 16% (4/25) 8% (2/25) 8% (2/25)

Pilosa 0% (0/11) 9.1% (1/11) 27.3% (3/11) 45.4% (5/11) 18.2% (2/11)

Didelphimorphia 20% (1/5) 0% (0/5) 60% (3/5) 0% (0/5) 20% (1/5)

Rodentia 25% (1/4) 0% (0/4) 0% (0/4) 25% (1/4) 50% (2/4)

Artiodactyla 25% (1/4) 0% (0/4) 0% (0/4) 75% (3/4) 0% (0/4)

Cingulate 0% (0/2) 0%% (0/2) 0%% (0/2) 100% (2/2) 0%% (0/2)

Birds

Pelecaniformes 100% (2/2) 0% (2/2) 0% (2/2) 0% (2/2) 0% (2/2)

Accipitriformes 0% (0/2) 0% (0/2) 50% (1/2) 50% (1/2) 0% (0/2)

Anseriformes 0% (0/2) 0% (0/2) 0% (0/2) 100% (2/2) 0% (0/2)

Ciconiiformes 0% (0/1) 0% (0/1) 0% (0/1) 0% (0/1) 100% (1/1)

Piciformes 0% (0/1) 0% (0/1) 0% (0/1) 100% (1/1) 0% (0/1)

Coraciiformes 0% (0/1) 0% (0/1) 0% (0/1) 0% (0/1) 100% (1/1)

Total 27.1% (23/85) 20% (17/85) 17.6% (15/85) 22.4% (19/85) 12.9% (11/85)

DAIA: Death associated with an infectious agent; DNAIA-PD: Death not associated with an infectious agent, with a pre-existing infectious disease; DNAIA-IAD: Death

not associated with an infectious agent, with infectious agent detection; DNAIA: Death not associated with an infectious agent; UD: Undetermined death.

https://doi.org/10.1371/journal.pone.0262063.t003
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agents with zoonotic potential, such as Contracaecum spp. The etiological agents identified in

birds and the number of samples analyzed are specified in Table 5.

Geospatial distribution of detected infectious agents and their

accumulation by geographic region

We established the distribution of the most frequently identified infectious agents in the ana-

lyzed specimens (Fig 4). First, a wide distribution of zoonotic parasites was evidenced in the

country. Then, there was an accumulation in the Central Pacific region of specimens with

acanthocephaliasis (12 with Prosthenorchis spp., one with Macracanthorhynchus spp.), and an

accumulation of specimens with gastrointestinal nematodes in the great metropolitan area and

tourist areas of Guanacaste (six with Angiostrongylus spp., one with Baylisascaris spp., one

with Ancylostoma spp.). Additionally, vector-borne diseases occurred exclusively in specimens

from coastal regions and altitudes less than 300 meters above sea level (11 with filariae, two

with flaviviruses). The CDV in carnivores from various areas of the country did not show a

specific distribution pattern (n = 10). The analyzed specimens associated with these infectious

agents can be observed in S1 Table.

Table 4. Number of infectious agents tested and positive in mammals according to etiology.

Mammalian taxonomic groups / infectious agent Primate Carnivora Pilosa Didelphimorphia Rodentia Artiodactyla Cingulate

Viral CDV (n = 18) 0 10 0 0 0 0 0

Alphaviruses (n = 9) 0 0 0 0 0 0 0

Flaviviruses (n = 9) 0 0 0 0 0 0 0

Influenza virus (n = 8) 0 0 0 0 0 0 0

Rabies virus (n = 76) 0 0 0 0 0 0 0

Bacterial C. perfringens (n = 18) 0 0 0 0 0 1 0

E. coli (n = 18) 1 0 0 0 0 0 0

K. pneumoniae (n = 18) 1 0 0 0 0 0 0

T. pyogenes. (n = 18) 0 0 0 0 1 0 0

S. aureus (n = 18) 1 1 1 0 0 0 0

Mycobacterium spp. (n = 18) 0 0 0 0 0 0 0

Protozoan parasites Toxoplasma gondii (n = 4) 2 0 0 0 0 0 0

Trypanosoma spp. (n = 14) 0 0 0 3 0 0 0

Leishmania spp. (n = 8) 0 0 0 0 0 0 0

Sarcocystis spp. (n = 5) 0 1 0 0 0 1 0

Metazoan parasites 1 Angiostrongylus spp. 0 5 0 1 0 0 0

Dirofilaria spp. 0 4 0 0 0 0 0

Dipetalonema spp. 5 0 2 0 0 0 0

Gnathostoma spp. 0 0 0 1 0 0 0

Baylisascaris spp. 0 1 0 0 0 0 0

Ancylostoma spp. 0 1 0 0 0 0 0

Cylicospirura spp. 0 1 0 0 0 0 0

Prosthenorchis spp. 10 5 0 0 0 0 0

Macracanthorhynchus spp. 0 1 0 0 0 0 0

Spirometra spp. 0 2 0 0 0 0 0

n: Number tested.
1 only zoonotic metazoan parasites are shown.

https://doi.org/10.1371/journal.pone.0262063.t004
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Discussion

The WHMP schemes have proven to be a fundamental tool in monitoring pathogens of zoo-

notic importance [62–64]. These surveillance systems are even more critical in geographical

Fig 4. Geographical distribution of the most frequently identified infectious agents in the referred specimens. The

individuals reported as negative were depicted even though the infectious agent was not detected in the

complementary analyzes or no lesions suggestive of the disease were found in the pathological analysis.

https://doi.org/10.1371/journal.pone.0262063.g004

Table 5. Number of infectious agents tested and positive in birds according to etiology.

Avian taxonomic groups / infectious agent Pelecaniformes Accipitriformes Anseriformes Ciconiiformes Piciformes Coraciiformes

Viral Alphaviruses (n = 3) 0 0 0 0 0 0

Flaviviruses (n = 3) 2 0 0 0 0 0

Influenza virus (n = 9) 0 0 0 0 0 0

Newcastle virus (n = 9) 0 0 0 0 0 0

Bacterial C. perfringens (n = 1) 0 0 0 0 0 0

E. coli (n = 1) 0 0 0 0 0 0

K. pneumoniae (n = 1) 0 0 0 0 0 0

Salmonella spp. (n = 1) 0 0 0 0 0 0

S. aureus (n = 1) 0 0 0 0 0 0

Metazoan parasites 1 Contracaecum spp. 2 0 0 0 0 0

n: Number of tested.
1 only zoonotic metazoan parasites are shown.

https://doi.org/10.1371/journal.pone.0262063.t005
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areas where high rates of biodiversity are prominent [14]. For example, Costa Rica is economi-

cally dependent on its ecotourism services, and its fauna is one of its most important assets

[65]. However, no epidemiological surveillance system is currently directed to wildlife to study

outbreaks or other health events.

Furthermore, implementing these types of schemes is essential for a country considered a

"hotspot" for the appearance or emergence of new infectious agents; however, we encountered

some obstacles when performing this study [11,13]. These obstacles are mainly related to lack

of legislation for data collection, willingness to cooperate between agencies, financial disincen-

tives and logistical problems for the storage and transport of carcasses, and difficulties similar

to those described by some authors [66,67].

The storage capacity and transport logistics directly impact WHMPs. Urban areas with

transportation facilities reported and dispatched more carcasses, in contrast to remote or diffi-

cult-to-access regions with less participation. These patterns tally with previous reports indi-

cating that notification of wildlife mortality or morbidity generally depends on the initial

detection of cases by the general public. Consequently, detected cases are biased towards

events in populated or easily accessible areas [17,68,69]. Nevertheless, this shows that the exist-

ing logistics in ACC and ACOPAC (urban areas with the highest number of reported cases)

can be used to maintain the WHMP at least on a regional level. Likewise, it is necessary to

expand the network of laboratories to include other institutions with pathological diagnosis

capacity within the WHMP scheme to reduce reliance on the storage and transportation of

carcasses. This measure has been shown to improve coverage in distant regions and increase

case reporting [19,20,63].

The lack of guidelines and legislation also limited participation and case detection. This

means that the system is maintained by the self-interest of officials and interpersonal relation-

ships of people from different institutions. These findings are consistent with previous evalua-

tions of the veterinary services of Costa Rica [26]. To ensure the long-term sustainability of the

WHMP, legislation and regulations are necessary to provide financial support and clarify the

specific functions of each institution. This could facilitate coordination and cooperation

between institutions to notify and transport specimens [19,20,62,63].

The notification and referral of cases relied heavily on the management centers that provide

veterinary care to wild animals. Other studies have proposed these institutions as an indispens-

able tool within the WHMPs due to the large amount of information they can generate for the

system [70,71]. The performance of necropsy by the veterinary doctors of management centers

would greatly support the efficiency and sustainability of this WHMP, reducing the demand

for transportation (only samples would be transported, not complete carcasses), and it would

eliminate freezing; facilitating diagnosis. This could encourage the participation of manage-

ment centers from distant regions without storage capacity, thus increasing coverage. How-

ever, the previous regulations, manuals and procedures for post-mortem analysis and

sampling procedures are necessary, as occurs with other surveillance schemes, to avoid affect-

ing the diagnosis since pathological analysis is vital in passive surveillance schemes [17,20,21].

Carnivores and primates were the taxa with higher representation. These data can be associ-

ated with the fact that they are medium to large-sized animals, more charismatic, and with a

more significant contact of these species with human environments, facilitating the recogni-

tion of morbidities and mortalities by the population [69]. Therefore, taxa should be priori-

tized in the WHMPs, since it allows for optimizing the use of resources. Furthermore, in

addition to their easy detection, they are taxa in which various pathogenic agents can circulate

[5,7].

In contrast, obtaining viable bird carcasses for post-mortem analysis was challenging due to

the advanced degree of autolysis, wasting important transport and storage resources, an
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obstacle experienced in other studies [72]. Wild birds should be included in surveillance pro-

grams for influenza virus and Newcastle disease virus that maintains in the poultry production

systems in the country. This would maintain monitoring as is done in other WHMPs without

the need for post-mortem analysis, thus avoiding wasted resources [19].

In addition, most cases with a traumatic cause of death presented some pre-existing infec-

tious pathology. Free-living animals are naturally exposed to infectious agents, so it is common

to find them in incidental lesions in post-mortem analysis [73–75]. These cases allow the

detection of infectious agents in passive surveillance, whether or not they are associated with

the cause of death [73,76–78]. Therefore, they must be kept within the cases to be analyzed.

The diagnostic capability allowed the WHMP to detect infectious agents that could affect

the health of domestic animals, public health, and the conservation of wild species. For exam-

ple, our study shows the presence of potentially zoonotic bacterial infectious agents classified

as emerging diseases in some regions [79–81]. The most relevant are Klebsiella pneumoniae,
Escherichia coli, and Staphylococcus aureus, which were associated with primary disease in

some of the analyzed specimens. In addition, these bacteria currently top the list of infectious

agents with antibiotic resistance genes, thus showing the importance of monitoring these

agents in WHMP schemes [28,82–84].

We also detect vector-borne diseases, which are recognized as agents with epidemic poten-

tial in Latin America due to tropical regions’ climatic, health, and socioeconomic conditions

that favor their spread [85–87]. We identified primates, carnivores, and birds with infectious

agents of vector transmission, for example, Dirofilaria spp., Dipetalonema spp., and flavivirus

mainly present by the coast. Most of these cases come from regions already defined as endemic

areas for these infectious agents in domestic animals, which reveals a possible transmission by

this route and a potential risk for the conservation of the species [88–91].

Detection of these vector-borne pathogens also reveals a potential risk to public health in

places with a high rate of tourists visiting Costa Rica. This risk is reinforced by health system

reports showing at least three disease cases in humans associated with Dirofilaria immitis and

isolated cases of subcutaneous filariasis [92–94]. Furthermore, detecting virus-related mortali-

ties such as West Nile in wild birds (as was possibly our case) allows early alerts. It has been

shown that there is a higher risk of exposure for human populations close to the regions where

mortalities of wild birds occur [95,96].

The CDV was frequently detected in our study, reflecting the relevance of this virus in the

role of spillover towards carnivore species and possibly the implications of a spillback towards

susceptible or non-vaccinated domestic canines [97–99]. Endemic CDV outbreaks have been

reported anecdotally throughout Costa Rica and America in dog populations. More recently,

sporadic outbreaks in wild carnivores of urban and suburban areas have been recorded

[97,100]. Unfortunately, Costa Rica does not have official data on the domestic dog popula-

tion. Therefore, herd immunity data in this population is uncertain, especially for dogs without

an owner or in non-urban areas. This poses a risk to wild carnivores, especially in urban areas

with susceptible canine populations. Furthermore, the possibility of transmission of this virus

to other species beyond carnivores is a hypothesis that has been investigated [101]. Given the

high diversity of vertebrates in Costa Rica and the high circulation of CDV detected, this virus

should be considered within epidemiological surveillance programs.

Also, this study’s gastrointestinal and pulmonary metazoan parasites are relevant for public

health and wildlife conservation programs. For instance, we detect the nematodes Angiostron-
gylus spp., Baylisascaris spp., Ancylostoma spp., and Cylicospirura spp. in mammalian species

located in densely populated areas. In addition, we detected cases with acanthocephalans

(Prosthenorchis spp., Macracanthorhynchus spp.) concentrated in the Central Pacific region

and parasites transmitted by water or aquatic food such as the cestode Spirometra spp. in the
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country’s northern region. This result proves a cost-effective tool for the WHMP, which does

not require financial resources beyond qualified personnel for the morphological identification

of worms and allows the detection of pathogenic agents that primarily impact children [102–

104].

This study did not detect rabies virus infections. These findings are supported by previous

studies on wild animals in Costa Rica [29]. However, this passive surveillance program allowed

expanding coverage in the number of species and geographic regions through constant moni-

toring of wild species. Human and livestock fatalities have been reported associated with rabies

infections, which stresses the relevance of its continuous monitoring of species that can act as

reservoirs [35,105]. A similar situation applies to Newcastle and Influenza virus. In our sam-

ples, none of the birds showed evidence of disease or associated clinical signs; however, due to

the great relevance of these diseases to the country and the risk for national production, it is

advisable to establish routine monitoring by the animal health agency under the WHMP

scheme [35,106]. Including serological monitoring of tuberculosis and brucellosis of wild spe-

cies in the scheme would even be advisable. These national epidemiological surveillance pro-

grams already include some wild species, and coverage could be expanded [107].

Finally, we could not identify the cause of death in some of the samples analyzed. Although

we tested for the main circulating infectious agents in Costa Rica, no conclusive data was

obtained. Ranges of 17–22% have been reported in pathological studies in wild species, where

the causative agent of the disease cannot be determined, mainly associated with the degree of

autolysis and the diagnostic complexity [68,74,76]. These results are consistent with the per-

centages of an absence of identification of the etiological agent in our samples. Although prov-

ing that diagnostic capacity is acceptable, further work is necessary to develop robust

diagnostic techniques for wild animal testing. Further efforts and incentives, financed by gov-

ernment authorities, are required for pathogen surveillance in wildlife through the consistent

implementation of tools such as new generation metagenomics [108–111].

Although the proposed program is limited to the country’s resources and infrastructure,

and it is clear that it is not generally applicable, it is important to start evaluating the imple-

mentation of these programs in regions where disease surveillance in wildlife is minimal. For

example, this study shows that this passive surveillance scheme is cost-effective and feasible to

establish in countries with limited resources. Furthermore, this scheme was possible since we

could adapt the infrastructure dedicated to monitoring diseases in productive animals accord-

ing to the scope and objectives of monitoring wildlife specific to each region. We also showed

sufficient diagnostic capacity in the country for detecting infectious agents of zoonotic and

conservation importance in wild animals. If this scheme is maintained over time, it will gener-

ate data to allow the decision-making to promote the conservation of species, animal health,

and public health by knowing the circulation and behavior of these pathogens [68].

This study highlights the need for an inter-institutional and trans-institutional commit-

ment to the sustainability over time of this surveillance scheme. Participant institutions must

remain motivated and focused on the benefits beyond the economic part. The feedback to field

staff and the frequent reports of the importance of detected pathogens are crucial to maintain-

ing motivation and detection network, as in our case. In addition, the information generated

from the experience of the initial establishment of a WHMP is critical to meeting the chal-

lenges involved in developing this type of scheme in regions with limited resources and estab-

lished as hotspots for emerging infectious diseases [13,112]. Although it is necessary to

standardize methods and techniques for monitoring pathogens in wildlife, the development of

pilot schemes allows sharing experiences with programs already installed and leads to subse-

quent optimization and standardization studies that will facilitate the exchange of information

and expand coverage [112].
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Calvo, Ana Jiménez-Rocha, Carlos Jiménez, Marta Piche-Ovares, Gaby Dolz, Bernal León,

Alejandro Alfaro-Alarcón.

Software: Fernando Aguilar-Vargas, Tamara Solorzano-Scott, Mario Baldi.

Supervision: Alejandro Alfaro-Alarcón.

Visualization: Fernando Aguilar-Vargas, Tamara Solorzano-Scott, Alejandro Alfaro-Alarcón.

Writing – original draft: Fernando Aguilar-Vargas, Tamara Solorzano-Scott, Mario Baldi,

Elı́as Barquero-Calvo, Alejandro Alfaro-Alarcón.

Writing – review & editing: Fernando Aguilar-Vargas, Tamara Solorzano-Scott, Mario Baldi,
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97. Piche M, Alfaro A, Jiménez-Soto M, Murcia P, Jiménez C. Caracterización molecular de dos brotes de

Distemper Canino en animales de vida silvestre en Costa Rica. Ciencias Veterinarias. 2019; 36:38.

https://doi.org/10.15359/rcv.36-3.27

98. Kapil S, Yeary TJ. Canine Distemper spillover in domestic dogs from urban wildlife. Vet Clin North Am

Small Anim Pract. 2011; 41:1069–86. https://doi.org/10.1016/j.cvsm.2011.08.005 PMID: 22041204.

99. Viana M, Cleaveland S, Matthiopoulos J, Halliday J, Packer C, Craft ME, et al. Dynamics of a morbilli-

virus at the domestic-wildlife interface: Canine Distemper virus in domestic dogs and lions. Proc Natl

Acad Sci U S A. 2015; 112:1464–9. Epub 2015/01/20. https://doi.org/10.1073/pnas.1411623112

PMID: 25605919.

100. Rendon-Marin S, Martinez-Gutierrez M, Suarez JA, Ruiz-Saenz J. Canine Distemper Virus (CDV)

Transit Through the Americas: Need to Assess the Impact of CDV Infection on Species Conservation.

Front Microbiol. 2020; 11:810. Epub 2020/05/21. https://doi.org/10.3389/fmicb.2020.00810 PMID:

32508760.
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