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Background. Patterns of concerted fluctuation in populations—synchrony—can reveal impacts of climatic
variability on disease dynamics. We examined whether malaria transmission has been synchronous in an area
with a common rainfall regime and sensitive to the Indian Ocean Dipole (IOD), a global climatic phenomenon
affecting weather patterns in East Africa.

Methods. We studied malaria synchrony in 5 15-year long (1984–1999) monthly time series that encompass
an altitudinal gradient, approximately 1000 m to 2000 m, along Lake Victoria basin. We quantified the association
patterns between rainfall and malaria time series at different altitudes and across the altitudinal gradient encom-
passed by the study locations.

Results. We found a positive seasonal association of rainfall with malaria, which decreased with altitude. By
contrast, IOD and interannual rainfall impacts on interannual disease cycles increased with altitude. Our analysis
revealed a nondecaying synchrony of similar magnitude in both malaria and rainfall, as expected under a Moran
effect, supporting a role for climatic variability on malaria epidemic frequency, which might reflect rainfall-
mediated changes in mosquito abundance.

Conclusions. Synchronous malaria epidemics call for the integration of knowledge on the forcing of malaria
transmission by environmental variability to develop robust malaria control and elimination programs.

Synchrony, the degree of concerted fluctuations among
populations in a region, is a key parameter to under-
stand impacts of climatic trends and variability on
population dynamics [1]. For infectious diseases, syn-
chrony has become especially important because its
estimation offers a mean to test hypotheses regarding
the importance of exogenous epidemic drivers. In a
relatively homogenous environment, a synchrony
decay with distance implies that impacts of climatic
trends and variability, if any, are marginal when

compared with regulatory factors related to population
processes (eg, immunity in diseases) and independent
of the changing environment [2]. By contrast, a non-
decaying synchrony of magnitude slightly larger than
or similar to that of the environment will support a
Moran effect, in which transmission patterns in a region
could be similar by a common mechanism of action
for the exogenous, often climatic, forcing [3]. As orig-
inally defined, the Moran effect arises by the emerging
synchronization of autoregressive dynamics of time
series by the impact of common sources of exogenous
forcing (ie, the autonomous [or endogenous] dynamics
of a population get tuned to that of external factors in-
fluencing the dynamics of populations living under a
similar [or correlated] environment) [2].

Vector-borne diseases, such as malaria, are excellent
model systems to study synchrony and test Moran
effects. For example, Moran effects are expected in
malaria because of the monotonic relationship
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between vector abundance and transmission [4] and between
vectors and rainfall [5]. Lake Victoria basin (LVB) is a unique
setting to study exogenous forcing in malaria transmission
because of three main reasons:

1. It encompasses an altitudinal gradient, which is also a
gradient of malaria endemicity [6, 7].
2. It has relatively homogeneous rainfall patterns [8].
3. Rainfall and malaria are impacted by global climatic

phenomena, especially the Indian Ocean Dipole (IOD), an

irregular oscillation of sea-surface temperatures in which the
western Indian Ocean becomes alternately warmer and then
colder than the eastern part of the ocean [9, 10].

Here, we studied malaria synchrony in 5 15-year long
(1984–1999) monthly time series (Figure 1A) from LVB, west
Kenya (Figure 2). We also studied rainfall time series
(Figure 1B) synchrony to test the condition of environmental
autocorrelation necessary for a Moran effect. We used the
dipole mode index (DMI) (Figure 1C) as an IOD index [11] to

Figure 1. Data for malaria time series (A ), rainfall (B ), dipole mode index (C ), and trends (D ). Solid lines are for Loess, dashed lines are for singular
spectrum analysis (SSA), and dotted lines are for empirical mode decomposition. There is no dashed line for Kisii and Kapsabet because the SSA was
unable to detect any trends. E, Loess detrended malaria time series. F, SSA detrended malaria time series. G, Malaria intrinsic mode functions (IMFs)
with interannual cycles. H, Malaria IMFs with seasonal cycles. I, Malaria IMFs with high-frequency cycles. Color codes are shared by panels A, D, E, F,
G, H, and I. The IMFs were derived via an EMD for each time series.
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quantify its role as interannual driver of malaria and rainfall
dynamics. We found that both rainfall and malaria had a non-
decaying synchrony with distance and that malaria synchrony
was slightly larger than rainfall synchrony, as expected under
a Moran effect. A more detailed time scale analysis of syn-
chrony showed that seasonal cycles in malaria transmission
were led by 2-month lagged changes in rainfall, with decreas-
ing intensity as a function of altitude. By contrast, interannual
cycles in the disease were driven by IOD, with an increasing
intensity with altitude. These patterns could be related to the
population dynamics of Anopheles mosquitoes, whose abun-
dance is likely driven by rainfall patterns in the region [5, 12].
Finally, our results clearly show that patterns of climatic varia-
bility have a strong signature in malaria transmission among
vulnerable populations and are, therefore, a necessary input
for a strong malaria control/elimination framework.

MATERIALS AND METHODS

Data
Malaria and rainfall data spanned from January 1985 to De-
cember 1999. The 5 malaria time series were monthly counts of
inpatients admitted into the hospitals because of high fever and
other clinical malaria symptoms. In Kericho, all malaria cases
were confirmed by blood slide examination [13]. At the other 4
sites (Maseno, Kendu Bay, Kisii, and Kapsabet), we collected
the data from books with malaria-diagnosed inpatient records.
Unfortunately, these books did not indicate whether all re-
corded malaria cases were confirmed by blood slide examin-
ation. However, we were informed by staff members from each

hospital that cases were often confirmed by blood slide examin-
ation. We restricted our samples to this kind of malaria infec-
tion (ie, inpatient admissions) in order to make a sound
statistical analysis at the price of using data that likely underesti-
mate the total number of malaria infections [14]. Rainfall data
were obtained from the Kenyan Meteorological Service. We
used rainfall records from some of the same locations of the
malaria time series and a location midway between the 2 lowest
altitude sites (Figure 2). Specifically, we employed meteorologi-
cal records from Kisumu as proxy inputs for Kendu Bay and
Maseno, localities for which we were unable to find relatively
complete records through the Kenyan Meteorological Service
and other meteorological data repositories. We chose Kisumu

Figure 3. Rainfall empirical model decomposition time series. A, In-
trinsic mode functions (IMFs) with interannual cycles. B, IMFs with sea-
sonal cycles. C, IMFs with high-frequency cycles.

Figure 2. Study sites in Lake Victoria basin, western Kenya. Kisumu
(0°6′S 34°45′E; altitude = 1131 m); Kendu Bay (0°24′05″S, 34°39′56″E;
altitude = 1240 m); Maseno (0°00′15″S, 34°36′16″E; altitude = 1500 m);
Kisii (0°40′S, 34°46′E; altitude = 1670 m); Kapsabet (0°12′N, 35°06′E;
altitude = 2000 m); Kericho (0°23′55″N, 35°15′30″E; altitude = 2000 m).
On the map, elevation is measured in meters and indicated by gray
color. Location color indicates the data available at each site: blue =
rainfall; green = disease; and red = disease and rainfall.
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because of the lack of missing observations during the study
period and because of the similar rainfall patterns to Kendu
Bay and Maseno according to meteorological models [8].

Statistical Analysis
To estimate synchrony in the time series, we first removed
nonstationary trends [15] in the malaria time series
(Figure 1D) using 3 standard procedures: local polynomial
regression fitting (Loess) [15], singular spectrum analysis
(SSA) [16], and empirical mode decomposition (EMD) [17].
These methods have different assumptions and outcomes,
Loess extracts (non)linear trends (Figure 1E), whereas SSA
(Figure 1F) and EMD decompose signals into different oscil-
latory (Figure 1G–I) and noncyclical components. In SSA, the
trends are extracted by examining the variability of the largest
eigenvalue from an autocovariance matrix, whereas EMD de-
composes a time series by building oscillatory signals—intrinsic
mode functions (IMF)—that are repeatedly subtracted from
the time series. We employed these different methods to
ensure robustness in the inferences from subsequent analyses.
The lack of nonstationary trends in rainfall made unnecessary

Table 1. Confidence Intervals for the Regional Synchrony
Estimates

Time Series Mean ± SE 95% Confidence Intervals

Malaria, Loess 0.48 ± 0.06 .34–.61

Malaria, SSA 0.53 ± 0.05 .42–.64
Malaria, EMD 0.49 ± 0.03 .42–.56

Rainfall, raw data 0.52 ± 0.06 .37–.66

Rainfall, EMD 0.43 ± 0.03 .34–.51

The 95% confidence intervals were estimated from the standard error (SE) of
maximum likelihood estimates for the regional synchrony.

Abbreviations: EMD, empirical mode decomposition; SSA, singular spectrum
analysis.

Figure 4. Synchrony analysis. A, Malaria time series correlation at lag 0 (r0) as function of latitude (Lat), longitude (Long), and 2-dimensional distance
(2D) between the studied localities. Colors indicate the method employed to detrend the malaria time series employed to estimate r0. B, Two-dimensional
distance spline correlogram (3 edf ) for the signal obtained by adding the seasonal and interannual intrinsic mode functions from the empirical mode
decomposition (EMD) applied to the malaria time series. C, Contour map for temporal cross-correlations between the EMD detrended malaria time series.
D, Rainfall time series correlation at lag 0 (r0) as function of Lat, Long, and 2D distance between the studied localities. E, Two-dimensional distance spline
correlogram (2 edf ) for the signal obtained by adding the seasonal and interannual intrinsic mode functions from the empirical mode decomposition applied
to the rainfall time series. F, Contour map for temporal cross-correlations among the rainfall time series. In A, B, D, and E, Synch is the estimated regional
synchrony obtained with each method. In B and E, dotted lines indicate the 95% confidence intervals for the smoothed correlation function (solid line)
obtained with 1000 data permutations. In C and F, the y-axis represents the lag for the cross correlation and the x-axis represents the 2D distance. Values
in the contour lines are correlations, which are significantly different from 0 when their absolute value is >0.075 (P < .05).
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the treatment with Loess and SSA. However, we decomposed
rainfall data using EMD to perform frequency-specific associ-
ation analysis (Figure 3). Second, we estimated the synchrony
(r0) (ie, cross correlation at lag 0) of rainfall and detrended
malaria time series using both linear regression [2] and spline
correlogram on high-frequency filtered, detrended time series
[18]. Third, we studied the association between rainfall and
DMI with malaria along the altitudinal gradient of our study
locations using cross-correlation functions [15]. Further
details about the data and methods are presented in the Sup-
plementary Data.

RESULTS

Estimates for malaria regional synchrony (Table 1) were
similar using SSA, Loess (Figure 4A), and EMD (Figure 4B)
detrended time series. Malaria time series synchronicity was
observed across the 2-dimensional distance and altitude (gra-
dients) with all series in phase and with their maximum

correlation observed at lag 0 (Figure 4C), with minimum cor-
relations well above 0.3 at lag 0 in the EMD detrended malaria
data (Figure 4B and 4C; Table 1). For rainfall, synchrony
estimates from the raw time series (Figure 4D) and EMD
(Figure 4E) were very similar across the range of distances and
altitudes studied (Figure 4F). To estimate the smoothed corre-
logram of malaria (Figure 4B) and rainfall (Figure 4E), we em-
ployed only the EMD detrended time series because this
procedure also allowed us to filter out high-frequency com-
ponents in the time series, which can artificially increase time
series synchrony by the emerging correlation expected from
high-frequency band constraints. The smoothed correlograms
for both malaria (Figure 4B) and rainfall (Figure 4E) were
similar to the regional synchrony, as the 95% confidence inter-
val contained the smoothed correlogram along the range of
studied distances in each case (Figure 4B and 4E). Similarly,
as expected under a Moran effect, the regional malaria and
rainfall synchrony patterns were not statistically different
(Table 1). Two-month lagged rainfall had the highest positive

Figure 5. Time scale impacts of rainfall and Indian Ocean Dipole on malaria synchrony across an altitude gradient. A, Singular spectrum analysis
(SSA) detrended malaria time series correlation with rainfall. B, Seasonal malaria intrinsic mode function (IMF) correlation with seasonal rainfall IMF.
C, Interannual malaria IMF correlation with interannual rainfall IMF. D, SSA detrended malaria correlation with dipole mode index (DMI). E, Seasonal
malaria IMF correlation with DMI. F, Interannual malaria IMF correlation with DMI. The IMFs for each malaria time series were obtained by empirical
mode decompositions. In all panels, the x-axis represents the lag for the cross correlation and the y-axis represents the site altitude. Values in the
contour lines are correlations, which are significantly different from 0 when their absolute value is >0.075 (P < .05).
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correlation with malaria, with a decreasing association as
function of increasing elevation (Figure 5A), a pattern also
observed for an analysis based only on the EMD-extracted
seasonal malaria IMFs (Figure 5B). The consideration of EMD
extracted interannual malaria IMFs (Figure 5C) showed the
association between interannual rainfall and interannual
malaria to have a maximum positive correlation when rainfall
is 1-month lagged in relation with malaria, and a maximum
negative correlation when rainfall is 4-month lagged in

relation with malaria, suggesting a role for rainfall temporal
variability in the synchronous malaria dynamics. The SSA de-
trended malaria-DMI cross correlation function (Figure 5D)
showed the positive association between these time series was
maximum for up to 4 months of lagged DMI at altitudes
>1600 m. When the seasonal (Figure 5E) and interannual
(Figure 5F) malaria IMF were correlated with DMI, the associ-
ation up to 4 months of lagged DMI showed to be robust at
interannual scales and altitudes >1600 m. In addition, the
analysis with the IMFs also showed that DMI and seasonal
components of malaria are associated at seasonal scales for 3
and 4 months of lagged DMI (Figure 5E) and the association
between DMI and malaria can be continuous along the altitu-
dinal gradient given the emergence of significant patterns of
association at altitudes <1600 m and >1600 m (Figure 5F).
Patterns of association between malaria and DMI could be
mediated by the impact of DMI on rainfall. Dipole mode
index and rainfall have a correlation that decreases with
altitude, which is maximized between 2 and 6 months
(Figure 6A), where DMI has nil impact on the seasonal com-
ponents of rainfall (Figure 6B) but is positively associated with
the interannual components of rainfall (Figure 6C).

DISCUSSION

Moran effects have seldom been observed in population dy-
namics [2, 3]. This could reflect the dominance of endogenous
feedbacks over exogenous forcing in population dynamics
[19]. For example, in diseases, a decaying synchrony with dis-
tance, or travelling waves of transmission, has been described
for both vectorborne diseases [20] and directly transmitted
diseases [21]. In contrast, we found that both seasonal and in-
terannual cycles of malaria have a nondecaying synchrony,
both in 2-dimensional distance and along an altitudinal
gradient, at distances far greater than the mosquito vector dis-
persal, which on average barely exceeds 2 km [22], or children
movement in the area [23]. Moreover, the degree of synchrony
in malaria time series is slightly above, yet not statistically
different, from rainfall synchrony, as expected under a Moran
effect [3].

A Moran effect in malaria transmission at the LVB could be
explained by the monotonic dependence of Plasmodium para-
site transmission on Anopheles vector density in endemic
areas [4]. Mosquito population regulation is sensitive to the
availability and stability of larval habitats [5, 24]. In fact, Ano-
pheles vector density tracks rainfall variability in LVB in a
regular fashion [12]. It takes about 2 months for malaria trans-
mission to reach its peak following large rainfall events,
roughly the total time of a few mosquito generations [25], in-
cluding the parasite incubation period [26]. This probably
implies a reactive response by mosquitoes to the transient cre-
ation of habitats by rainfall, assuming a density-dependent

Figure 6. Time scale association between rainfall and dipole mode
Index (DMI). A, Rainfall correlation with DMI. B, Seasonal rainfall intrin-
sic mode function (IMF) correlation with DMI. C, Interannual rainfall IMF
correlation with DMI. The IMFs for each malaria time series were ob-
tained by empirical mode decompositions. The x-axis represents the lag
for the cross correlation and the y-axis represents the site altitude.
Values in the contour lines are correlations, which are significantly differ-
ent from 0 when their absolute value is >0.075 (P < .05).
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regulation [14], a pattern described in other species of mosqui-
toes vector of pathogens. Because Anopheles mosquitoes are
ubiquitous in LVB [5, 12, 24], a synchronized amplification of
their populations and malaria transmission following rainfall
could explain the patterns of synchrony we report here. If this
is the case, then the IOD, which has the strongest impact on
rainfall at high altitudes according to climatic circulation
models [8], could drive the Moran effect in malaria trans-
mission in LVB, probably by homogenizing rainfall synchrony
across the altitudinal gradient, thus homogenizing weather
conditions that increase mosquito productivity [24]. The exist-
ence of Moran effects in malaria transmission is a pattern that
shows the nontrivial impacts of climatic variability on malaria
epidemics. For example, the spatial extent of synchronous pat-
terns in malaria transmission (ie, the maximum distance over
which malaria synchrony is constant) could be used as indi-
cator of the minimum spatial scale for interventions aimed at
eliminating malaria from a given landscape. Thus, consider-
ation of impacts by environmental variability on malaria trans-
mission biology is required to increase robustness in the
development and implementation of malaria control and elim-
ination programs, to be prepared against surprises that can
arise from malaria forcing by climatic variability, one of the
many aspects shaping the complexity of malaria transmission.

Supplementary Data
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of all supplementary data are the sole responsibility of the authors. Ques-
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