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SHORT COMMUNICATION

Identification and molecular characterisation of fifteen
tropical isolates of the entomopathogenic fungusMetarhizium
R. M. Castro-Vásqueza,b, S. Hernández-Villalobosb, M. Montero-Astúa a,c,
A. Vargas-Martínezb, A. González-Herrerab and R. Molina-Bravo b

aCentro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica;
bEscuela de Ciencias Agrarias, Universidad Nacional, Heredia, Costa Rica; cEscuela de Agronomía, Universidad
de Costa Rica, San José, Costa Rica

ABSTRACT
Twelve Metarhizium isolates from Costa Rica, two from Honduras
and one from Nicaragua were characterised using molecular and
morphological information. Two gene sequences, TEF1-α and β-
TUB, identified isolates as M. anisopliae, M. brunneum and
M. robertsii, and has provided new sequence information. Eleven
SSRs revealed fourteen different genotypes. Morphological
variability coincided with allelic diversity within species. This work
provides a starting point for the application of integral biocontrol
programmes, but more comprehensive and detailed surveys are
warranted to understand the species composition and genetic
diversity of the Metarhizium in Central America.
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Metarhizium is comprised of haploid, entomopathogenic fungi found throughout the
globe and is associated with more than 200 host species (Hajek & Leger, 1994). In
nature, Metarhizium species act as regulators of insect populations and have been used
in biocontrol (Lacey, Frutos, Kaya, & Vail, 2001).Metarhizium phylogeny has been exam-
ined through a multigene approach and more than 20 species have been recognised
(Kepler, Humber, Bischoff, & Rehner, 2014). Within the M. anisopliae complex, there is
considerable cryptic diversity and some species such as M. anisopliae, M. brunneum,
M. robertsii and M. pingshaense are morphologically indistinguishable (Bischoff,
Rehner, & Humber, 2009; Kepler et al., 2014).

In North and South American countries many diversity and characterisation studies
have been conducted and have reported numerous previously recognised species
(Brunner-Mendoza, Moonjely, del Rocío Reyes-Montes, Toriello, & Bidochka, 2017; Her-
nández-Domínguez et al., 2016; Lopes et al., 2013; Pérez-González et al., 2014; Rezende,
Zanardo, da Silva Lopes, Delalibera, & Rehner, 2015; Rocha, Inglis, Humber, Kipnis, &
Luz, 2013), new species (Gutierrez et al., 2019; Kepler et al., 2014; Lopes et al., 2018)
and unassigned lineages (Botelho, Alves-Pereira, Prado, Zucchi, & Júnior, 2019; Iwanicki
et al., 2019; Lopes et al., 2014). Conversely, only one of these studies has been conducted in

© 2020 Informa UK Limited, trading as Taylor & Francis Group

CONTACT R. Molina-Bravo ramon.molina.bravo@una.cr Escuela de Ciencias Agrarias, Universidad Nacional,
Apartado Postal 86-3000, Heredia 40101, Costa Rica

Supplemental data for this article can be accessed at https://doi.org/10.1080/09583157.2020.1732296.

BIOCONTROL SCIENCE AND TECHNOLOGY
https://doi.org/10.1080/09583157.2020.1732296

http://crossmark.crossref.org/dialog/?doi=10.1080/09583157.2020.1732296&domain=pdf&date_stamp=2020-02-26
http://orcid.org/0000-0003-1458-242X
http://orcid.org/0000-0001-5564-4426
mailto:ramon.molina.bravo@una.cr
https://doi.org/10.1080/09583157.2020.1732296
http://www.tandfonline.com


Central America (Hughes, Thomsen, Eilenberg, & Boomsma, 2004). The aim of this study
was to identify and characterise a set of 15 Metarhizium isolates, which are part of a col-
lection of entomopathogenic fungi housed in Universidad Nacional de Costa Rica and
intended for insect biocontrol.

Fifteen isolates were collected, 12 from diverse agrosystems in Costa Rica, two from
Honduras and one from Nicaragua, either directly from soil or from infected insects
(Table 1). A baiting method with Galleria mellonella larvae was used to isolate the
fungi from soil samples (Zimmermann, 1986). DNA was extracted using 100 mg of 10–
15 d-old mycelial mats grown in PDA following a modified protocol outlined by
Hoyos-Carvajal, Duque, and Orduz P (2008). PCR amplification of the internal tran-
scribed spacer (ITS) region was performed using the ITS4 and ITS5 primers (White,
Bruns, Lee, & Taylor, 1990). Two nuclear genes were amplified: the translation elongation
factor 1 alpha (TEF1-α) using the 983F and 2218R primers (Rehner & Buckley, 2005), and
the beta-tubulin gene (β-TUB) using the T1, T22, T1 and T222 primers (O’Donnell &
Cigelnik, 1997). PCR products were visualised on 1% agarose gels, stained with
GelRed™ (Biotium, USA) and sent to Macrogen Inc. (Seoul, Korea) for Sanger sequen-
cing. ITS sequences from the 15 isolates were deposited at the National Center of Biotech-
nology Information (NCBI) GenBank database (accession numbers MG786728 to
MG786742). TEF1-α and β-TUB accession numbers, ex-type Metarhizium species and
other reference sequences are detailed in Table S1. Sequences from the TEF1-α and β-
TUB were edited and aligned using BioEdit 7.2.5 (Hall, 1999) and MUSCLE (Edgar,
2004). Single and concatenated sequences of both genes were used to infer phylogenetic
relationships. Maximum likelihood (ML) and Bayesian inference (BI) phylogenetics
were analysed using MEGA7 (Kumar, Stecher, & Tamura, 2016) and MrBayes 3.1.2 (Ron-
quist et al., 2012), respectively. Maximum likelihood trees were run with Tamura-Nei as
the appropriate model and group bootstrap values were estimated with 1000 iterations.
Bayesian inference analysis was performed using a mixed model and two partitions
were defined for the concatenated sequences of the TEF1-α and β-TUB genes. The final
tree was generated by running a total of 10,000,000 generations. Sampling was performed
every 500 generations. The first 25% of trees were omitted from each run to obtain statio-
narity values in the log-likelihood scores. The value 0.95 was defined as the optimal pos-
terior probability (PP) and the nodes with bootstrap values ≥ 70% were considered
supported. Short Sequence Repeat (SSR) analysis was performed using 12 markers
develop by Oulevey, Widmer, Kölliker, and Enkerli (2009): Ma2049, Ma2054, Ma2055,
Ma2063, Ma2064, Ma2065, Ma2069, Ma2077, Ma2097, Ma2098, Ma2099, Ma2274. Poly-
merase chain reactions were performed using a modified M13 universal primer protocol
(Schuelke, 2000) to generate fluorescently-labeled fragments. PCR reactions were mixed in
a total volume of 10 μL that contained 1X DreamTaq Polymerase Buffer (Thermo Scien-
tific, USA), 0.2 mM dNTPs, 2 mM MgCl2, 0.02 μM forward primer containing the M13
tail, 0.1 μM reverse primer, 0.08 μM IRDye 800®-labeled M13 primer and DreamTaq Poly-
merase at 0.01 U μL−1. Thermal profiles were performed as described by Oulevey et al.
(2009). Allelic fragments were resolved in 8% acrylamide gels on a LI-COR 4300 DNA
Analyser (LI-COR, Biosciences, Lincoln NE, USA). Allele sizes were estimated using
Cross Checker (Buntjer & Otsen, 1999). SSR size variation, number of alleles and
genetic diversity indices were determined using the poppr software package for R
(Kamvar, Tabima, & Grünwald, 2014).
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Table 1. Metarhizium isolates from Central America extracted from soil or insect in agrosystems.
Isolate Species Country Latitute Longitute Locality Isolation source Conidia (μm)*

MTR-ECA0 M. anisopliae Honduras 14°00′36′′N 87°00′40′′W San Antonio de Oriente, Fco. Morazán Soil 4.7–9.5a × 1.8–2.9a

MTR-ECA1 M. brunneum Costa Rica 10°00′36′′N 84°06′53′′W Barva, Heredia Unknown insect 4.3–6.9e × 2.1–3.7a

MTR-ECA3 M. brunneum Nicaragua – – – Soil 4.7–6.7c × 1.8–3.4c

MTR-ECA4 M. brunneum Costa Rica 9°13′01′′N 83°20′10′′W Puntarenas, Puntarenas Phylophaga vicina 4.7–7.3cd × 2.0–3.3c

MTR-ECA5 M. anisopliae Costa Rica 10°03′36′′N 84°26′16′′W Palmares, Alajuela Soil 3.9–6.7b × 2.0–3.6bc

MTR-ECA6 M. anisopliae Costa Rica 9°59′26′′N 83°02′09′′W Limón, Limón Soil 5.0–7.0b × 2.1–5.6c

MTR-ECA7 M. anisopliae Costa Rica 8°32′10′′N 82°56′25′′W Ciudad Neily, Puntarenas Soil 5.0–7.0b × 2.1–3.0c

MTR-ECA8 M. brunneum Honduras 14°23′04′ ′N 88°10′48′′W La Esperanza, Intibucá Soil 3.2–6.4cde × 2.0–3.4c

MTR-ECA9 M. anisopliae Costa Rica 8°49′15′′N 82°58′15′′W Coto Brus, San José Soil 4.6–6.7de × 2.0–3.1c

MTR-ECA11 M. robertsii Costa Rica 9°13′01′′N 83°20′10′′W Puntarenas, Puntarenas Soil 4.6–6.2de × 2.0–3.1c

MTR-ECA16 M. anisopliae Costa Rica 10°13′01′′N 83°47′05′′W Guápiles, Limón Soil 5.0–6.1c × 2.1–5.4c

MTR-ECA28 M. brunneum Costa Rica 10°00′59′′N 84°12′42′′W Alajuela, Alajuela Soil 4.4–6.1cde × 2.0–3.0c

MTR-ECA29 M. anisopliae Costa Rica 8°36′12′′N 83°6′48′′W Golfito, Puntarenas Soil 5.0–6.6b × 2.0–3.8a

MTR-ECA34 M. anisopliae Costa Rica 8°32′10′′N 82°56′25′′W Ciudad Neily, Puntarenas Soil 4.6–6.1cde × 2.1–3.3c

MTR-ECA38 M. anisopliae Costa Rica 9°13′01′′N 83°20′10′′W Puntarenas, Puntarenas Soil 4.6–7.0b × 2.2–3.3ab

Note: Collection data and morphological measurements.
*Conidia mean length and width compared using a Kruskal-Wallis and t-student post hoc tests, α = 0.01. Size ranges with the same letter have means that are not significantly different.
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For morphological analysis, monosporic isolate cultures were grown on potato dextrose
agar (PDA) at 26°C. Conidial slides were prepared using 8–10 d-old cultures and mounted
on glass slides with lactophenol. Twenty conidia per isolate were measured in triplicate
using a Nikon Eclipse 80i microscope. Images were captured on a Nikon DS-fi1
camera. Conidia shape and colour, arrangement of phialides and colonial growth were
recorded. Radial growth was measured on four replicate plates in PDA media. Plates
were inoculated with 5 mm-long agar discs from 8 to 10 d old mycelia grown on PDA.
Plates were kept at 26°C and a 24 h photoperiod. Radial growth was recorded at 3, 7,
10, 17 and 21 d after inoculation. Conidial size (length and width) differences were ana-
lysed by Kruskal Wallis (KW) and Student t tests (α = 0.01). Growth was analysed by
repeated measures ANOVA.

Taxonomic identification using the ITS sequences determined isolates at the genus
level but were not included in the phylogenetic analyses due to low resolution
(Driver, Milner, & Trueman, 2000; Huang et al., 2005b; Huang, Humber, Li, Li, &
Hodge, 2005a). Phylogenetic analyses of TEF1-α, β-TUB and combined TEF1-α/β-
TUB partial sequences yielded alignments of 851, 856 and 1707 bp, respectively, exclud-
ing gaps. A total of 155 parsimonious informative sites were included; 55 were from
TEF1-α and 100 from β-TUB. Compatible trees from BI and ML analyses were obtained;
only the BI phylogram for concatenated sequences is shown (Figure 1). The clustering
observed was consistent with the multilocus phylogeny reported by Kepler et al.
(2014). Based on the concatenated gene sequences, the isolates from Costa Rica, Hon-
duras and Nicaragua were assigned asM. anisopliae, M. robertsii and M. brunneum, cor-
responding to the PARB clade together with M. pingshaense (PP support of 95%).
Isolates ARSEF 1914 and ARSEF 1015 (M. majus), and CBS 258.9 and ARSEF 7507
(M. guizhouense) clustered together to form the MGT clade (composed of M. majus
and M. guizhouense =M. taii; PP 98%) as defined by Bischoff et al. (2009). Metarhizium
acridum (ARSEF 7486) was distantly related to the PARB and MGT clades, as estab-
lished by previous studies (Bischoff et al., 2009). Two subgroups were observed in
M. anisopliae isolates: a cluster of five isolates (MTR-ECA6, 9, 29, 34, 38) related (PP
98%) to the ex-type reference sequence from Eritrea (ARSEF 7487); and four isolates
(MTR-ECA0, 5, 7, 16) clustering (PP 99%) with sequences from Brazil (Genbank
AY445082) and Mexico (GenBank KF981907). Metarhizium brunneum isolates were
more closely related (PP 85%) to an isolate from Mexico (ARSEF 3297) than the ex-
type reference from the USA (ARSEF 2107). Moreover, the single M. robertsii (MTR-
ECA11) isolate, corresponding references ARSEF 4739, 727, 7501 and isolate A103
(GenBank KC461031, from Mexico) formed a closely related group (PP 100%). SSR
analysis revealed genetic diversity within M. anisopliae and M. brunneum. Locus
Ma2274 and isolate MTR-ECA16 represented 33.3% and 75% of the null alleles, respect-
ively, and were excluded from further analysis. All eleven SSR markers incorporated in
the analysis were polymorphic (3–6 alleles per locus). Allele size range per locus was
similar to that of previously reported research (Oulevey et al., 2009). Metarhizium ani-
sopliae isolates had the most unique alleles across all loci (21). Only one allele (120 pb) of
one locus (Ma2065) was common among all isolates. MTR-ECA11, an M. robertsii
isolate, showed unique alleles throughout five loci. Locus Ma2054 yielded different
alleles for all three species and can potentially be used to distinguish among species,
while loci Ma2063 and Ma2097 had the greatest number of alleles (Table S3). SSR
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analysis revealed a different genotype for each M. anisopliae isolate, while the five
M. brunneum isolates corresponded to four genotypes. The high genetic diversity and
polymorphisms observed were unexpected due to the number of isolates. In
Denmark, few genotypes have been found within two of the species identified herein;
six genotypes out of 126 isolates of M. brunneum and M. robertsii (Steinwender et al.,
2015). In three M. anisopliae fungal collections from Switzerland comprised of 104 iso-
lates, 66 genotypes were detected using 41 SSR markers (Oulevey et al., 2009). However,
in Mexico and Chile there was greater genotype diversity (Becerra Velásquez, Paredes
Cárcamo, Rojo Meriño, France Iglesias, & Franco Durán, 2007; Serna-Domínguez
et al., 2019). We attribute this phenomenon to two factors: (i) the previously reported
high polymorphisms in the PARB clade species complex (Mayerhofer et al., 2015)
and (ii) the diversity of ecosystems found in the tropics. Morphological descriptions
determined that colony pigmentation was white or yellow before sporulation and
turned olive green upon reaching maturity. There were no observed differences in

Figure 1. Consensus tree based on Bayesian inferences (BI) of the TEF1-α and β-TUB concatenated
partial gene sequences (1707 bp). Posterior probabilities ≥70% from Bayesian analysis are shown at
branching points. Metarhizium anisopliae (ARSEF 7487), M. brunneum (ARSEF 2107), M. guizhouense
(CBS 258.90), M. humberi (IP 46), M. majus (ARSEF 1914) and M. pingshaense (CBS 257.90) are shown
in blue as ex-type sequences. Metarhizium acridum (ARSEF 7486) was used as an outgroup.
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appearance of mature conidiogenous cells or mycelial colour among species (Figure S1).
Conidia sizes were within the species range as identified by sequence analyses (4.5 to
7.5 μm by 2.0 to 3.5 μm; Bischoff et al., 2009). Differences in length (KW = 271.1, df =
14, P < 0.01) and width (KW = 120.1, df = 14, P < 0.01) were significant among isolates
(Table 1). Although conidial size ranges overlapped among species, MTR-ECA0, an
M. anisopliae isolate collected in Honduras, produced significantly longer conidia (a
mean of 6.7 μm) compared with all other isolates (KW = 271.1, df = 14, P < 0.01;
Figure S2). Metarhizium anisopliae isolates MTR-ECA5 and 9 showed the highest and
the lowest radial growth after 21 d after transfer, respectively (Table S2). MTR-ECA6
grew significantly faster compared to all other isolates with a mean of 56.1 mm at
17 d (P < 0.01; Table S2), while other isolates grew ≤56.9 mm at 21 d within the same
statistical group.

The present study demonstrated that three Metarhizium species are currently recog-
nised to occur in Central American agrosystems and suggested a high degree of genetic
diversity (11 SSR markers indicated high variability within 15 isolates).

To our knowledge, this is the first study to report a detailed morphological and molecu-
lar characterisation of Metarhizium isolates from Costa Rica, Honduras and Nicaragua.
Most studies in this geographical region have focused mainly on the performance of
Metarhizium isolates in controlling insect pests or on the identification of Metarhizium
associated with other biological systems, such as rain forest litter and insect microbiota
(Badilla Fernández, 2002; Bills & Polishook, 1994; Rivera-Méndez 2016; Vargas-Asensio
et al., 2014). None of the fifteen isolates analysed in this study were identified as
M. humberi, the recently described species for the PARB clade from Brazil and Mexico
(Luz et al., 2019). However, based on a recent report of M. humberi in Mexico
(Brunner-Mendoza et al., 2017), Luz et al. (2019) suggest that the species is likely to be
found throughout the tropical Americas with distinct rainy and dry seasons, which
includes Costa Rica. More inclusive surveys and characterisation work is needed to
describe the diversity of the genus in the region.

Metarhizium and other entomopathogenic fungi have been used in many crops. In
Costa Rica and in other Central American countries, several products, includingMetarhi-
zium, have been used as biopesticides for over thirty years (Rivera-Méndez, 2016).
However, insect control using these products has been practiced with a limited under-
standing of the genetic and species composition of isolates. In spite of Central America’s
rich biological diversity, the NCBI database housed a mere 13 Metarhizium nucleotide
sequence entries (11 ITS and two 18S) from Costa Rica and none fromHonduras or Nicar-
agua (https://www.ncbi.nlm.nih.gov, accessed 24 October 2019). A better knowledge of
Metarhizium species identification and genetic diversity will provide a platform for a
more strategic and knowledge-based approach for integraded biological control in the
region.
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