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Abstract In this paper we introduce and analyze a hybridizable discontinuous Galerkin
(HDG) method for numerically solving a class of nonlinear Stokes models arising in quasi-
Newtonian fluids. Similarly as in previous papers dealing with the application of mixed
finite element methods to these nonlinear models, we use the incompressibility condition to
eliminate the pressure, and set the velocity gradient as an auxiliary unknown. In addition,
we enrich the HDG formulation with two suitable augmented equations, which allows us
to apply known results from nonlinear functional analysis, namely a nonlinear version of
Babuška–Brezzi theory and the classical Banach fixed-point theorem, to prove that the dis-
crete scheme is well-posed and derive the corresponding a priori error estimates. Then we
discuss some general aspects concerning the computational implementation of the method,
which show a significant reduction of the size of the linear systems involved in the Newton
iterations. Finally, we provide several numerical results illustrating the good performance of
the proposed scheme and confirming the optimal order of convergence provided by the HDG
approximation.
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1 Introduction

The devising of suitable numerical methods for solving the linear and nonlinear Stokes
and related problems has become a very active research area during the last decade. In
particular, a mixed finite element method and a suitable augmented version of the latter for a
nonlinear Stokes flow problem involving a non-Newtonian fluid, are introduced and analized
in [21]. In addition, the velocity–pressure–stress formulation for incompressible flows has
gained considerable attention in recent years due to its natural applicability to non-Newtonian
flows, where the corresponding constitutive equations are nonlinear. In general, an interesting
feature of the mixed methods is given by the fact that, besides the original unknowns, they
yield direct approximations of several other quantities of physical interest. For instance,
an accurate direct calculation of the stresses is very desirable for flow problems involving
interaction with solid structures.

On the other hand, the hybridizable discontinuous Galerkin (HDG) method, introduced in
[10] for diffusion problems, is one of the several high-order discretization schemes that benefit
from the hybridization technique originally applied in [15] to the local discontinuous Galerkin
(LDG) method for time dependent convection–diffusion problems. The main advantages of
HDG methods include a substantial reduction of the globally coupled degrees of freedom,
which was a criticism for the discontinuous Galerkin (DG) methods for elliptic problems
during the last decade, and the fact that convergence is obtained even for a polynomial
degree k = 0. Additionally, the approximate flux converges with order k + 1 for k ≥ 0,
and an element-by-element computation of a new approximation of the scalar variable is
possible, which converges with order k + 2 for k ≥ 1 (see e.g. [9,11,13]). In the context
of the linear Stokes equation, the hybridization for DG methods was initially introduced in
[5] and then analyzed in [11,30]. Lately, an overview of the recent work by Cockburn et
al. on the devising of hybridizable discontinuous Galerkin (HDG) methods for the Stokes
equations of incompressible flow was provided in [14].

Now, the utilization of DG methods to numerically solve nonlinear boundary value
problems has been first considered in [3] and [24]. Indeed, the application of the local discon-
tinuous Galerkin (LDG) method to a class of nonlinear diffusion problems was developed in
[3], whereas the extension of the interior penalty hp DG method to quasilinear elliptic equa-
tions was studied in [24]. The results from [3] were generalized in [4], where the a-priori and
a-posteriori error analyses of the LDG method as applied to certain type of nonlinear Stokes
models (whose kinematic viscosities are nonlinear monotone functions of the gradient of the
velocity) were derived. The approach in [4] is based on the introduction of the flux and the
tensor gradient of the velocity as further unknowns. A suitable Lagrange multiplier is also
needed to ensure that the corresponding discrete variational formulation is well-posed. A
two-fold saddle point operator equation is obtained as the resulting LDG mixed formulation,
which is then reduced to a dual mixed formulation. A nonlinear version of the well known
Babuška–Brezzi theory is applied to prove that the discrete formulation is well-posed and
derive the corresponding a priori error analysis. In turn, the analysis from [24] was extended
in [16], where the a priori and a posteriori error analysis, with respect to a mesh-dependent
energy norm, of a class of interior penalty hp DGFEM for the numerical approximation
of basically the same quasi-Newtonian fluid flow problems studied in [4], were provided.
Furthermore, an HDG approach was employed in [29] for the numerical solution of steady
and time-dependent nonlinear convection–diffusion equations. In fact, the approximate scalar
variable and corresponding flux are first expressed in [29] in terms of an approximate trace of
the scalar variable, and then the jump condition of the numerical fluxes are explicitly enforced
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across the element boundaries. As a consequence, a global equation system solely in terms
of the approximate trace of the scalar variable is obtained at every Newton iteration. At the
end, and similarly as in previous papers on HDG, an element-by-element postprocessing
scheme is applied to obtain new approximations of the flux and the scalar variable, which
converge with order k + 1 and k + 2, respectively, in the L2-norm. Nevertheless, and up to
our knowledge, there is still no contribution in the literature concerning HDG for nonlinear
Stokes systems.

According to the above discussion, we are interested in this paper in applying the HDG
approach to the class of quasi-Newtonian Stokes flows studied in [4,16,19] (see also [21,25]).
To this end, we plan to employ the same velocity–pseudostress formulation from [21]. In
what follows, given any Hilbert space U,U := U n and U := U n×n denote, respectively, the
space of vector and square matrices of order n, n ∈ {2, 3}, with entries in U . In order to define
the boundary value problem of interest, we now let � be a bounded and simply connected
polygonal domain in Rn with boundary �. As in [21], our goal is to determine the velocity
u, the pseudostress tensor σ , and the pressure p of a steady flow occupying the region �,
under the action of external forces. More precisely, given a volume force f ∈ L2(�) and
g ∈ H1/2(�), we seek a tensor field σ , a vector field u, and a scalar field p such that

σ = μ(|∇u|)∇u − p I in �, div(σ ) = −f in �,

div(u) = 0 in �, u = g on � ,

∫
�

p = 0 ,
(1.1)

whereμ : R+ → R+ is the nonlinear kinematic velocity function of the fluids, div stands for
the usual divergence operator div acting along each row of tensor, ∇u is the tensor gradient
of u, | · | is the euclidean norm of Rn×n , and I is the identity matrix of Rn×n . As required
by the incompressibility condition, we assume from now on that the datum g satisfies the
compatibility condition

∫
�

g · ν = 0, where ν stands for the unit outward normal at �. The
kind of nonlinear Stokes problem given by (1.1) appears in the modeling of a large class of
non-Newtonian fluids (see, e.g. [1,27,28,32]). In particular, the Ladyzhenskaya law, is given
by μ(t) := μ0 + μ1tβ−2 ∀ t ∈ R+, with μ0 ≥ 0, μ1 > 0, and β > 1, and the Carreau law
for viscoplastic flows (see, e.g. [28,32]) reads μ(t) := μ0 + μ1(1 + t2)(β−2)/2 ∀ t ∈ R+,
with μ0 ≥ 0, μ1 > 0, and β ≥ 1.

The rest of the work is organized as follows. In Sect. 2 we introduce the augmented
hybridizable discontinuous Galerkin formulation involving the velocity, the pseudostress,
the velocity gradient and the trace of the velocity, as unknowns. In Sect. 3 we show the
unique solvability of the augmented HDG scheme by considering an equivalent formulation
and then applying a nonlinear version of the Babuška–Brezzi theory and the classical Banach
fixed-point Theorem. The corresponding a priori error estimates are derived in Sect. 4. Next,
in Sect. 5 we discuss some general aspects concerning the computational implementation of
the HDG method. Finally, several numerical experiments validating the good performance of
the method and confirming the rates of convergence derived are reported in Sect. 6. We end the
present section with further notations to be used below. Given τ := (τi j ), ζ := (ζi j ) ∈ Rn×n ,
we write as usual

tr (τ ) :=
n∑

i=1

τi i , τ d := τ − 1

n
tr (τ ) I, and τ : ζ :=

n∑
i, j=1

τi jζi j .

Also, in what follows we utilize the standard terminology for Sobolev spaces and norms,
employ 0 to denote a generic null vector, null tensor or null operator, and use C , with
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or without subscripts, bars, tildes or hats, to denote generic constants independent of the
discretization parameters, which may take different values at different places.

2 The Augmented HDG Method

2.1 The Hybridizable Discontinuous Galerkin Method

We begin by eliminating the pressure. Indeed, we know from [21, Section 2.1] that the pair
given by the first and third equations in (1.1) is equivalent to

σ = μ(|∇u|)∇u − p I in � and p = − 1

n
tr (σ ) in �. (2.1)

In what follows we let ψi j : Rn×n → R be the mapping given by ψi j (r) := μ(|r|)ri j for all
r := (ri j ) ∈ Rn×n , for all i, j ∈ {1, . . . , n}. Then, throughout this paper we assume that μ
is of class C1 and that there exist γ0, α0 > 0 such that for all r := (ri j ), s := (si j ) ∈ Rn×n ,
there holds

|ψi j (r)| ≤ γ0‖r‖Rn×n ,

∣∣∣∣ ∂∂rkl
ψi j (r)

∣∣∣∣ ≤ γ0, ∀ i, j, k, l ∈ {1, . . . , n}, (2.2)

and
n∑

i, j,k,l=1

∂

∂rkl
ψi j (r)si j skl ≥ α0‖s‖2

Rn×n . (2.3)

It is easy to check that the Carreau law satisfies (2.2) and (2.3) for all μ0 > 0, and for all
β ∈ [1, 2]. In particular, with β = 2 we recover the usual linear Stokes model. We observe in
advance that the above assumptions are required to prove later on the strong monotonicity and
Lipschitz-continuity properties of the continuous and discrete nonlinear operators involving
the viscosity function μ (see Lemmas 3.4, 3.5 and 3.6 below).

Observe that we can rewrite (2.1) as

σ = ψ(∇u)− p I in � and p = − 1

n
tr (σ ) in �,

where ψ : Rn×n → Rn×n is given by ψ(r) := (ψi j (r)) for all r := (ri j ) ∈ Rn×n . Hence,
replacing p by − 1

n tr (σ ) in the first equation of (1.1), and introducing the gradient t := ∇u
in � as an auxiliary unknown, we arrive at the system

ψ(t)− σ d = 0 in �, t − ∇u = 0 in �,

−div(σ ) = f in �, tr (t) = 0 in �,

u = g on � ,

∫
�

tr (σ ) = 0 .
(2.4)

We recall here that a well-posed continuous formulation of (2.4) has been proposed in [21,
Section 2], which reads: Find (t, σ ,u) ∈ X1 × M1 × L2(�) such that∫

�

ψ(t) : s −
∫
�

σ d : s = 0 ∀ s ∈ X1,

−
∫
�

t : τ d −
∫
�

u · div(τ ) = −〈τν, g〉� ∀ τ ∈ M1, (2.5)

−
∫
�

v · div(σ ) =
∫
�

f · v ∀ v ∈ L2(�),
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where X1 := {s ∈ L
2(�) : tr (s) = 0} and M1 = {

τ ∈ H(div;�) : ∫
�

tr (τ ) = 0
}
. The

purpose of reminding here (2.5) will become clear in the a priori error analysis given below
in Section 4.

Next, in order to introduce the HDG method for the system (2.4), we first need some
preliminary notations. Let Th be a shape-regular triangulation of �̄ without the presence of
hanging nodes, and let Eh be the set of faces F of Th . Then, we set

∂Th := ∪ {∂T : T ∈ Th} ,
and introduce the inner products:

(u, v)Th :=
∑

T ∈Th

∫
T

u · v ∀ u, v ∈ L2(Th),

(σ , τ )Th :=
∑

T ∈Th

∫
T
σ : τ ∀ σ , τ ∈ L

2(Th),

〈u, v〉∂Th
:=

∑
T ∈Th

∫
∂T

u · v ∀ u, v ∈ L2(∂Th),

〈u, v〉∂Th\� :=
∑

T ∈Th

∑
F∈∂T \�

∫
F

u · v ∀ u, v ∈ L2(∂Th),

with the induced norm

‖v‖Th := (v, v)1/2Th
∀ v ∈ L2(Th).

In addition, we let Pk(U ) be the space of polynomials of total degree at most k defined on
the domain U , and denote by E i

h and E∂h the set of interior and boundary faces, respectively,
of Eh .

On the other hand, let ν+ and ν− be the outward unit normal vectors on the boundaries
of two neighboring elements T + and T −, respectively. We use (τ±, v±) to denote the traces
of (τ , v) on F := ∂T + ∩ ∂T − from the interior of T ±, where τ and v are second-order
tensorial and vectorial functions, respectively. Then, we define the means {{·}} and jumps [[·]]
for F ∈ E i

h , as follows

{{τ }} := 1

2

(
τ+ + τ−) , {{v}} := 1

2

(
v+ + v−) ,

[[τ ]] := τ+ν+ + τ−ν−, [[v ]] := v+ ⊗ ν+ + v− ⊗ ν−,

where ⊗ denotes the usual dyadic or tensor product. Next, given k ≥ 1, the finite dimensional
discontinuous subspaces are given by

Sh := {
s ∈ L

2(�) : s|T ∈ Pk(T ) ∀ T ∈ Th
}
,

�h :=
{
τ ∈ L

2(�) : τ |T ∈ Pk(T ) ∀ T ∈ Th, and
∫
�

tr (τ ) = 0

}
,

Vh := {
v ∈ L2(�) : v|T ∈ Pk−1(T ) ∀ T ∈ Th

}
,

Mh :=
{
μ ∈ L2(E i

h) : μ|F ∈ Pk(F) ∀ F ∈ E i
h

}
.

At this point we remark in advance that the choice of the polynomial degree k − 1 in the
definition of Vh is justified by the need of satisfying later on a joint discrete inf-sup condition
with the space �h (see Lemma 3.7 below).
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We now proceed similarly as in [11] to derive the HDG formulation of (2.4). In fact,
testing the equations in (2.4) with elements in the foregoing subspaces, integrating by parts,
and introducing the numerical fluxes ûh and σ̂ hν, we arrive at: Find (th, σ h,uh,λh) ∈
Sh ×�h × Vh × Mh , such that

(ψ(th), sh)Th − (sh, σ
d
h)Th = 0 ∀ sh ∈ Sh, (2.6a)

(th, τ
d
h)Th + (uh,divh(τ h))Th − 〈τ hν, ûh〉∂Th

= 0 ∀ τ h ∈ �h, (2.6b)

(σ h,∇hvh)Th − 〈̂σ hν, vh
〉
∂Th

= (f, vh)Th ∀ vh ∈ Vh, (2.6c)〈̂
σ hν,μh

〉
∂Th\� = 0 ∀ μh ∈ Mh, (2.6d)

where, letting�� be the L2(�) projection onto the space of piecewise polynomials of degree
less than or equals to k on E∂h , we set

ûh :=
{
��(g) on E∂h ,
λh on E i

h,
and σ̂ hν := σ hν − S(uh − ûh) on ∂Th, (2.6e)

where S is a stabilization operator to be defined below. Note that the condition ûh = ��(g)
on E∂h is usually imposed in the equivalent way

〈̂
uh,μh

〉
�

= 〈g,μh
〉
�

∀ μh ∈ Pk(Eh), which
is employed to perform the solvability analysis of (2.6). In this sense, note first that problem
(2.6) can be reformulated as

(ψ(th), sh)Th − (sh, σ
d
h)Th = 0,

(th, τ
d
h)Th + (uh,divh(τ h))Th − 〈τ hν,λh〉∂Th\� = 〈τ hν, g〉� ,

−(vh,divh(σ h))Th + 〈S(uh − λh), vh〉∂Th\� + 〈Suh, vh〉� = (f, vh)Th + 〈Sg, vh〉� ,〈
σ hν,μh

〉
∂Th\� − 〈S(uh − λh),μh

〉
∂Th\� = 0,

for all (sh, τ h, vh,μh) ∈ Sh ×�h × Vh × Mh , where (2.6c) has been rewritten using that

(σ h,∇hvh)Th =
∑

T ∈Th

∫
T
σ h : ∇vh =

∑
T ∈Th

{
−
∫

T
div(σ h) · vh +

∫
∂T
σ hν · vh

}
,

= −(vh,divh(σ h))Th + 〈σ hν, vh〉∂Th
.

We complete the definition of the HDG method by describing the stabilization tensor S.
In [11], general conditions for S were proposed, where in particular S+ does not necessarily
match S− for each F ∈ E i

h . Here, we consider the special case in which S+ = S− in each
F ∈ E i

h , that is, S has only one value on each F ∈ Eh . More precisely, given F ∈ Eh , the
tensor S satisfies the following conditions:

S|F is constant, and S|F is symmetric and positive definite.

Observe that S−1 is well defined and symmetric and positive definite as well on each F ∈ Eh .
In (3.5) below, we select a particular choice for tensor S in order to establish the well-
posedness of (2.9).

2.2 The Augmented HDG Formulation

In order to establish the unique solvability of the nonlinear problem (2.9), we now enrich the
HDG formulation with two augmented equations arising from the constitutive and equilib-
rium equations, that is
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κ1(σ
d
h − ψ(th), τ

d
h)Th = 0 ∀ τ h ∈ �h, (2.7)

and

κ2(divh(σ h),divh(τ h))Th = −κ2(f,divh(τ h))Th ∀ τ h ∈ �h, (2.8)

where κ1, κ2 > 0 are parameters to be determined later on. In this way, our problem becomes:
Find (th, σ h,uh,λh) ∈ Sh ×�h × Vh × Mh such that

(ψ(th), sh)Th − (sh, σ
d
h)Th = 0 , (2.9a)

(th, τ
d
h)Th + (uh,divh(τ h))Th − 〈τ hν,λh〉∂Th\� = 〈τ hν, g〉� , (2.9b)

−(vh,divh(σ h))Th + 〈S(uh − λh), vh〉∂Th\� + 〈Suh, vh〉� = (f, vh)Th + 〈Sg, vh〉� ,
(2.9c)〈

σ hν,μh
〉
∂Th\� − 〈S(uh − λh),μh

〉
∂Th\� = 0 , (2.9d)

κ1(σ
d
h − ψ(th), τ

d
h)Th = 0 , (2.9e)

κ2(divh(σ h),divh(τ h))Th = −κ2(f,divh(τ h))Th ,

(2.9f)

for all (sh, τ h, vh,μh) ∈ Sh × �h × Vh × Mh . Hence, in what follows we proceed as in
[3,4] and derive an equivalent formulation to (2.9) (see (2.11) below), for which we prove
its unique solvability. In addition, the a priori error estimates for (2.9) will also be based
on the analysis of (2.11). We emphasize, however, that the introduction of this equivalent
formulation is just for theoretical purposes and by no means for the explicit computation of
the solution of (2.9), which is solved directly as we explain below in Sect. 5.

First, we consider equation (2.9d) and note that

0 = 〈
σ hν,μh

〉
∂Th\� − 〈Suh,μh

〉
∂Th\� + 〈Sλh,μh

〉
∂Th\�

=
∑

T ∈Th

∑
F∈∂T \�

∫
F
σ hν · μh −

∑
T ∈Th

∑
F∈∂T \�

∫
F

Suh · μh +
∑

T ∈Th

∑
F∈∂T \�

∫
F

Sλh · μh

=
∑

F∈E i
h

∫
F
[[σ h ]] · μh − 2

∑
F∈E i

h

∫
F

(
S{{uh}} · μh − Sλh · μh

)

=
∫

E i
h

(
[[σ h ]] − 2S{{uh}} + 2Sλh

)
· μh ∀ μh ∈ Mh .

Hence, using that [[σ h ]] − 2S{{uh}} + 2Sλh ∈ Mh , we find that

[[σ h ]] − 2 S{{uh}} + 2 Sλh = 0 on E i
h,

which yields

λh = {{uh}} − 1

2
S−1[[σ h ]] on E i

h . (2.10)

Observe that (2.10) coincides with the expression for ûh given in [11]. We now replace λh

from (2.10) in (2.9b) and (2.9c). For this purpose, we first observe that

−〈τ hν,λh〉∂Th\� = −
∑

T ∈Th

∑
F∈∂T \�

τ hν · λh = −
∫

E i
h

[[τ h ]] · λh,

= 1

2

∫
E i

h

S−1[[σ h ]] · [[τ h ]] −
∫

E i
h

{{uh}} · [[τ h ]],
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and

−〈Sλh, vh〉∂Th\� = −〈Svh,λh〉∂Th\� = −
∑

T ∈Th

∑
F∈∂T \�

Svh · λh,

= −2
∫

E i
h

S{{vh}} · λh =
∫

E i
h

{{vh}} · [[σ h ]] − 2
∫

E i
h

S{{uh}} · {{vh}}.

In this way, the foregoing equations together with (2.9a), (2.9b), (2.9c), (2.9e) and (2.9f) lead
to the problem: Find ((th, σ h),uh) ∈ Hh × Vh such that

[Ah(th, σ h), (sh, τ h)] + [Bh(sh, τ h),uh] = [Fh, (sh, τ h)] ∀ (sh, τ h) ∈ Hh,

[Bh(th, σ h), vh] − [Sh(uh), vh] = [Gh, vh] + [Ch(uh), vh] ∀ vh ∈ Vh,
(2.11)

where Hh := Sh × �h , and the operators Ah : Hh → H ′
h,Bh : Hh → V ′

h,Sh : Vh → V ′
h

and Ch : Vh → V ′
h , and the functionals Fh : Hh → R and Gh : Vh → R, are defined by

[Ah(th, σ h), (sh, τ h)] := (ψ(th), sh)Th − (sh, σ
d
h)Th + (th, τ

d
h)Th

+ 1

2

∫
E i

h

S−1[[σ h ]] · [[τ h ]]

+ κ1(σ
d
h −ψ(th), τ

d
h)Th +κ2(divh(σ h),divh(τ h))Th ,

(2.12)

[Bh(sh, τ h), vh] := (vh,divh(τ h))Th −
∫

E i
h

{{vh}} · [[τ h ]] , (2.13)

[Sh(uh), vh] := 〈Suh, vh〉∂Th
, (2.14)

[Ch(uh), vh] := −2
∫

E i
h

S{{uh}} · {{vh}} ,
[Fh, (sh, τ h)] := 〈τ hν, g〉� − κ2(f,divh(τ h))Th ,

[Gh, vh] := −(f, vh)Th − 〈Sg, vh〉� ,
where [·, ·] stands in each case for the duality pairing induced by the corresponding oper-
ators and functionals. Note, for purposes that will become clear below, that the expression
[Ch(uh), vh] has been placed on the right-hand side of the second equation in (2.11). In
addition, while the above operators and functionals are defined on discrete spaces, it is not
difficult to see that they can act on continuous spaces as well. For example, Ah can actually
be defined on (Sh +L

2(�))×(�h +H(div;�)) and similarly for the other ones. In particular,
this fact will be employed at the beginning of Sect. 4.

3 Solvability Analysis

In this section, we establish the unique solvability of the nonlinear problem (2.11). To this
end, and following [3,4], we let h ∈ L∞(Eh) be the function related to the local meshsizes,
that is

h(x) :=
{

min{hT1 , hT2} if x ∈ int(∂T1 ∩ ∂T2),

hT if x ∈ int(∂T ∩ �),
and assume that the meshsize is bounded, that is, that there exists a constant h0 > 0 such that
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h := max
T ∈Th

{hT } ≤ h0. (3.1)

The main idea of our analysis consist of redefining (2.11) as a fixed point problem.

3.1 Preliminaries

The analysis below requires the following preliminary results.

Lemma 3.1 (Discrete trace’s inequality) There exists Ctr > 0, depending only on the shape
regularity of the mesh, such that for each T ∈ Th and F ∈ ∂T there holds

‖z‖2
0,F ≤ Ctr

{
h−1

T ‖z‖2
0,T + hT |z|21,T

}
∀ z ∈ H1(T ). (3.2)

Proof The proof uses a trace theorem and a scaling argument (see [8] for details). ��
Lemma 3.2 There exists c0 > 0, independent of h, such that for all z ∈ H1(�) there holds

‖h1/2z‖0,E i
h

≤ c0‖z‖1,�. (3.3)

Proof Given z ∈ H1(�), we have

‖h1/2z‖2
0,E i

h
=
∫

E i
h

h|z|2 = 1

2

∫
E i

h

h
(
|z+|2 + |z−|2

)
≤ 1

2

∑
T ∈Th

∫
∂T
h|z|2

≤ C
∑

T ∈Th

hT ‖z‖2
0,∂T ,

where C depends on the regularity of Th . Next, using (3.2) and (3.1), we deduce from the
foregoing inequalities that

‖h1/2z‖2
0,E i

h
≤ CCtr

∑
T ∈Th

hT

{
h−1

T ‖z‖2
0,T + hT |z|21,T

}

≤ CCtr(1 + h2)
∑

T ∈Th

‖z‖2
1,T ≤ c2

0‖z‖2
1,�,

with c0 := (CCtr(1 + h2
0))

1/2, which completes the proof. ��
Lemma 3.3 There exists a constant c1 > 0, independent of h, such that

‖τ h‖2
0,� ≤ c1

{
‖τ d

h‖2
0,� + ‖divh(τ h)‖2

Th
+ ‖h−1/2[[τ h ]]‖2

0,E i
h

}
∀ τ h ∈ �h .

Proof We follow similarly as in the proof of [2, Proposition 3.1, Chapter IV]. Indeed, given
τ h ∈ �h , we know from [22, Corollary 2.4 in Chapter I] that there is a unique z ∈ H1

0(�)

such that div(z) = tr (τ h) and

‖z‖1,� ≤ C‖tr (τ h) ‖0,�. (3.4)

Now, utilizing that z ∈ H1
0(�), we have that

‖tr (τ h) ‖2
0,� =

∫
�

tr (τ h) div(z) =
∫
�

τ h : {tr (∇z) I} ,

= n
∫
�

τ h : (∇z − (∇z)d) = n
∫
�

τ h : ∇z − n
∫
�

τ d
h : ∇z,
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= n
∑

T ∈Th

{
−
∫

T
z · div(τ h)+

∫
∂T
τ hν · z

}
− n

∫
�

τ d
h : ∇z,

= −n(z,divh(τ h))Th + n
∫

E i
h

[[τ h ]] · z − n
∫
�

τ d
h : ∇z.

Next, applying Cauchy–Schwarz inequality, and then (3.3) and (3.4), we find that

‖tr (τ h) ‖2
0,� ≤ n‖z‖0,�‖divh(τ h)‖Th + n‖h−1/2[[τ h ]]‖0,E i

h
‖h1/2z‖0,E i

h
+ n‖τ d

h‖0,�|z|1,�
≤ n‖z‖0,�‖divh(τ h)‖Th + nc0‖h−1/2[[τ h ]]‖0,E i

h
‖z‖1,� + n‖τ d

h‖0,�|z|1,�
≤ C‖z‖1,�

{
‖τ d

h‖2
0,� + ‖divh(τ h)‖2

Th
+ ‖h−1/2[[τ h ]]‖2

0,E i
h

}1/2

≤ C‖tr (τ h) ‖0,�

{
‖τ d

h‖2
0,� + ‖divh(τ h)‖2

Th
+ ‖h−1/2[[τ h ]]‖2

0,E i
h

}1/2
,

which gives

‖tr (τ h) ‖2
0,� ≤ C

{
‖τ d

h‖2
0,� + ‖divh(τ h)‖2

Th
+ ‖h−1/2[[τ h ]]‖2

0,E i
h

}
.

This inequality and the fact that ‖τ h‖2
0,� = ‖τ d

h‖2
0,�+ 1

n ‖tr (τ h) ‖2
0,�, complete the proof. ��

We now realize, thanks to the previous lemma, that for convenience of further analysis,
we need to establish a particular choice of the stabilization tensor S. For this purpose, we let
τ > 0 be a constant and set the tensor S as follows

S|F := τ h I ∀ F ∈ Eh, (3.5)

which certainly yields

S−1|F := (τh)−1
I ∀ F ∈ Eh . (3.6)

The parameter τ introduced here will play a key role later on for proving that the fixed
point operator derived from our solvability analysis is in fact a contraction (see Lemma 3.12
below). In addition, we consider the following definition of a norm onto �h

‖τ h‖2
�h

:= ‖τ d
h‖2

0,� + ‖divh(τ h)‖2
Th

+ ‖(τh)−1/2[[τ h ]]‖2
0,E i

h
∀ τ h ∈ �h

which, according to Lemma 3.3, satisfies

‖τ h‖0,� ≤ c2‖τ h‖�h ∀ τ h ∈ �h, (3.7)

where c2
2 := c1 max{1, τ } > 0 is independent of h. Note that the above suggests the following

norm on Hh := Sh ×�h

‖(sh, τ h)‖Hh :=
{
‖sh‖2

0,� + ‖τ h‖2
�h

}1/2 ∀ (sh, τ h) ∈ Hh .

On the other hand, we define the nonlinear operator A : Sh → S′
h by

[A(th), sh] := (ψ(th), sh)Th ∀ th, sh ∈ Sh .

Then, we have the following result.
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Lemma 3.4 Let γ0 and α0 be the constants from (2.2) and (2.3), respectively. Then, for all
th, sh ∈ Sh there hold

‖A(th)− A(sh)‖S′
h

≤ γ0‖th − sh‖0,� (3.8)

and

[A(th)− A(sh), th − sh] ≥ α0‖th − sh‖2
0,�. (3.9)

Proof See [21, Lemma 2.1] or [4, Section 3]. ��
We are now ready to establish that the nonlinear operator Ah defining the problem (2.11)

is also Lipschitz-continuous and strongly monotone. In particular, the second property will
depend on a suitable choice of the parameter κ1.

Lemma 3.5 Let Ah be the nonlinear operator defined by (2.12). Then, there exists a constant
CLC > 0, independent of h and τ , such that

‖Ah(th, σ h)− Ah(sh, τ h)‖H ′
h

≤ CLC ‖(th, σ h)− (sh, τ h)‖Hh ∀ (th, σ h), (sh, τ h) ∈ Hh .

Proof Given (th, σ h), (sh, τ h) and (rh, ρh) ∈ Hh , we obtain from the definition of A and
(3.6) that

[Ah(th, σ h)− Ah(sh, τ h), (rh, ρh)] = [A(th)− A(sh), rh] − κ1[A(th)− A(sh), ρ
d
h]

− (rh, (σ h − τ h)
d)Th + (th − sh, ρ

d
h)Th

+1

2

∑
F∈E i

h

∫
F
(τh)−1/2[[(σ h − τ h)]] · (τh)−1/2[[ρh ]]

+ κ1((σ h − τ h)
d, ρd

h)Th + κ2(divh(σ h − τ h),divh(ρh))Th , (3.10)

from which, applying Cauchy–Schwarz inequality and (3.8), it follows that

[A(th, σ h)− A(sh, τ h), (rh, ρh)] ≤ ‖A(th)− A(sh)‖S′
h
‖rh‖0,�

+ κ1‖A(th)− A(sh)‖S′
h

‖ρd
h‖0,�

+ ‖rh‖0,� ‖(σ h − τ h)
d‖0,� + ‖th − sh‖0,� ‖ρd

h‖0,�

+ 1

2
‖(τh)−1/2[[(σ h − τ h)]]‖0,E i

h
‖(τh)−1/2[[ρh ]]‖0,E i

h
+ κ1‖(σ h − τ h)

d‖0,� ‖ρd
h‖0,�

+ κ2‖divh(σ h − τ h)‖Th ‖divh(ρh)‖Th ,

≤ γ0‖th − sh‖0,� ‖rh‖0,� + γ0κ1‖th − sh‖0,� ‖ρd
h‖0,�

+ ‖rh‖0,� ‖(σ h − τ h)
d‖0,� + ‖th − sh‖0,� ‖ρd

h‖0,�

+ 1

2
‖(τh)−1/2[[(σ h − τ h)]]‖0,E i

h
‖(τh)−1/2[[ρh ]]‖0,E i

h
+ κ1‖(σ h − τ h)

d‖0,� ‖ρd
h‖0,�

+ κ2‖divh(σ h − τ h)‖Th ‖divh(ρh)‖Th .

In this way, setting

CLC := 3 max {1, γ0, κ1, γ0κ1, κ2} ,
we conclude that

[A(th, σ h)− A(sh, τ h), (rh, ρh)] ≤ CLC ‖(th, σ h)− (sh, τ h)‖Hh ‖(rh, ρh)‖Hh ,

which ends the proof. ��
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Lemma 3.6 Let Ah be the nonlinear operator defined by (2.12), and assume that the para-

meter κ1 lies in

(
0, 2α0

γ 2
0

)
, where α0 and γ0 are the positive constants from (2.2) and (2.3).

Then, there exists a constant CSM > 0, independent of h and τ , such that

[Ah(th, σ h)− Ah(sh, τ h), (th, σ h)− (sh, τ h)] ≥ CSM ‖(th, σ h)− (sh, τ h)‖2
Hh
,

for all (th, σ h), (sh, τ h) ∈ Hh.

Proof Given (th, σ h) and (sh, τ h) ∈ Hh , we take (rh, ρh) = (th, σ h) − (sh, τ h) in (3.10),
to obtain

[Ah(th, σ h)− Ah(sh, τ h), (th, σ h)− (sh, τ h)] = [A(th)− A(sh), th − sh]
− κ1[A(th)− A(sh), (σ h − τ h)

d] + 1

2
‖(τh)−1/2[[σ h − τ h ]]‖2

0,E i
h

+ κ1‖(σ h − τ h)
d‖2

0,� + κ2‖divh(σ h − τ h)‖2
Th
,

which, according to (3.8) and (3.9), implies that

[Ah(th, σ h)− Ah(sh, τ h), (th, σ h)− (sh, τ h)]
≥ α0 ‖th −sh‖2

0,�−γ0κ1 ‖th −sh‖0,� ‖(σ h −τ h)
d‖0,�+ 1

2
‖(τh)−1/2[[σ h −τ h ]]‖2

0,E i
h

+ κ1 ‖(σ h − τ h)
d‖2

0,� + κ2 ‖divh(σ h − τ h)‖2
Th
,

≥ α0 ‖th − sh‖2
0,� − γ0κ1

{‖th − sh‖2
0,�

2δ
+ δ ‖(σ h − τ h)

d‖2
0,�

2

}

+ 1

2
‖(τh)−1/2[[σ h − τ h ]]‖2

0,E i
h

+ κ1 ‖(σ h − τ h)
d‖2

0,� + κ2 ‖divh(σ h − τ h)‖2
Th
,

=
(
α0 − γ0κ1

2δ

)
‖th − sh‖2

0,� + κ1

(
1 − γ0δ

2

)
‖(σ h − τ h)

d‖2
0,�

+ κ2 ‖divh(σ h − τ h)‖2
Th

+ 1

2
‖(τh)−1/2[[σ h − τ h ]]‖2

0,E i
h

∀ δ > 0.

It follows that the constants multiplying the norms above become positive if δ ∈
(

0, 2
γ0

)
and

κ1 ∈
(

0, 2α0δ
γ0

)
. In particular, for δ = 1

γ0
we require κ1 ∈

(
0, 2α0

γ 2
0

)
, whence we find that

[Ah(th, σ h)− Ah(sh, τ h), (th, σ h)− (sh, τ h)]

≥
(
α0 − γ 2

0 κ1

2

)
‖th − sh‖2

0,� + κ1

2
‖(σ h − τ h)

d‖2
0,�

+ κ2 ‖divh(σ h − τ h)‖2
Th

+ 1

2
‖(τh)−1/2[[σ h − τ h ]]‖2

0,E i
h

≥ CSM‖(th, σ h)− (sh, τ h)‖2
Hh
,

with CSM := min

{
α0 − γ 2

0 κ1
2 , κ1

2 , κ2,
1
2

}
, thus completing the proof of the lemma. ��

Our next goal is to show the discrete inf-sup condition for the linear operator Bh . More
precisely, we have the following result.
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Lemma 3.7 There exists a constant Cinf > 0, independent of h and τ , such that

sup
(sh ,τh )∈Hh
(sh ,τh ) �=0

[Bh(sh, τ h), vh]
‖(sh, τ h)‖Hh

≥ Cinf ‖vh‖0,� ∀ vh ∈ Vh .

Proof We begin by recalling from (2.13) that Bh does not depend on sh , and hence it suffices
to show the existence of Cinf > 0 such that

sup
τh∈�h
τh �=0

∫
�

vh · divh(τ h)−
∫

E i
h

{{vh}} · [[τ h ]]
‖τ h‖�h

≥ Cinf ‖vh‖0,� ∀ vh ∈ Vh .

To this end we let RTk−1(�) be the global Raviart–Thomas space of degree k − 1, which is
clearly contained in Sh , and note that

sup
τh∈�h
τh �=0

∫
�

vh · divh(τ h)−
∫

E i
h

{{vh}} · [[τ h ]]
‖τ h‖�h

≥ sup
τh∈RTk−1(�)\{0}∫

� tr(τ h)=0

∫
�

vh · div(τ h)

‖τ h‖�h

.

In this way, and observing that ‖τ h‖�h is equivalent to ‖τ h‖div,� ∀ τ h ∈ RTk−1(�) such
that

∫
�

tr (τ h) = 0, with constants independent of h and τ , the rest of the proof follows from
classical results from mixed finite element methods (see, e.g. [18, Section 4.2 and Lemma
2.6]). ��

The following three lemmas establish the positive semidefiniteness of Sh and some discrete
trace, inverse, and boundedness inequalities to be employed later on.

Lemma 3.8 The operator Sh : Vh → V ′
h, defined by (2.14) is positive semidefinite, that is,

[Sh(vh), vh] ≥ 0 ∀ vh ∈ Vh .

Proof It is clear from (2.14) that

[Sh(vh), vh] =
∑

T ∈Th

∑
F∈∂T

∫
F

Svh · vh ∀ vh ∈ Vh,

which, thanks to the fact that S is a positive definite tensor on Eh , completes the proof. ��
Lemma 3.9 (Discrete trace’s inequality + inverse’s inequality) There exists Cinv > 0,
depending only on k and the shape regularity of the mesh, such that

‖v‖2
0,∂T ≤ Cinv h−1

T ‖v‖2
0,T ∀ v ∈ Pk(T ), ∀ T ∈ Th, (3.11)

and

‖τ‖2
0,∂T ≤ Cinv h−1

T ‖τ‖2
0,T ∀ τ ∈ Pk(T ), ∀ T ∈ Th . (3.12)

Proof The proof uses the discrete trace inequality from Lemma 3.1 and an inverse inequality.
See also [3, Lemma 3.2]. ��
Lemma 3.10 There exist constants Ĉ1, Ĉ2, Ĉ3 > 0, independent of h and τ , such that

(i) ‖h1/2{{vh}}‖0,E i
h

≤ Ĉ1‖vh‖0,� ∀ vh ∈ Vh.
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(ii) ‖h1/2vh‖0,E∂h
≤ Ĉ2‖vh‖0,� ∀ vh ∈ Vh.

(iii) ‖h1/2τ hν‖0,E∂h
≤ Ĉ3‖τ h‖0,� ∀ τ h ∈ �h.

Proof Given vh ∈ Vh , we use (3.11) to deduce that

‖h1/2{{vh}}‖2
0,E i

h
= 1

4

∫
E i

h

h|v+
h + v−

h |2 ≤ 1

2

∫
E i

h

h
(
|v+

h |2 + |v−
h |2
)

≤ 1

2

∑
T ∈Th

∫
∂T
h|vh |2

≤ C1

∑
T ∈Th

hT ‖vh‖2
0,∂T ≤ C1Cinv

∑
T ∈Th

‖vh‖2
0,T = C1Cinv‖vh‖2

0,�,

which shows (i) with Ĉ1 := (C1Cinv)
1/2 > 0. Next, using that h = hT on E∂h , and applying

again (3.11), we find that

‖h1/2vh‖2
0,E∂h

=
∫

E∂h
h|vh |2 ≤

∑
T ∈Th

hT ‖vh‖2
0,∂T ≤ Cinv‖vh‖2

0,�,

which proves (ii) with Ĉ2 := (Cinv)
1/2. Finally, the proof of (iii) follows from (3.12). ��

Using Lemma 3.10, the definition of tensor S given in (3.5), and the Cauchy–Schwarz
inequality, it is easy to check that the operators Bh,Sh and Ch , and the functionals Fh and Gh ,
are all bounded with respect to the corresponding norms. More precisely, the corresponding
bounds are established in the following lemma.

Lemma 3.11 Let sh ∈ Sh, τ h ∈ �h and uh, vh ∈ Vh. Then there hold

|[Bh(sh, τ h), vh]| ≤ (1 + τ Ĉ1) ‖(sh, τ h)‖Hh ‖vh‖0,�

|[Sh(uh), vh]| ≤ τ Ĉ1 ‖uh‖0,� ‖vh‖0,�

|[Ch(uh), vh]| ≤ 2τ Ĉ2
1 ‖uh‖0,� ‖vh‖0,� (3.13)

|[Fh, (sh, τ h)]| ≤ (κ2 + c2Ĉ3
)
B(f, g) ‖(sh, τ h)‖Hh

|[Gh, vh]| ≤ (1 + τh0Ĉ2
)
B(f, g) ‖vh‖0,�

where

B(f, g) := ‖f‖0,� + ‖h−1/2g‖0,E∂h
.

Proof The proof uses Lemma 3.10 and the definitions of each operator and functional. We
omit further details and refer to [3, Lemma 4.4]. ��

We end this section, by recalling from [20] the following abstract theorem.

Theorem 3.1 Let X,M be Hilbert spaces and assume that

(i) the operator A : X → X ′ is Lipschitz continuous and strongly monotonic, that is, there
exist γ, α > 0 such that

‖A(s1)− A(s2)‖X ′ ≤ γ ‖s1 − s2‖X ∀ s1, s2 ∈ X

and

[A(s1)− A(s2), s1 − s2] ≥ α ‖s1 − s2‖2
X ∀ s1, s2 ∈ X;

(ii) the linear operator S is positive semidefinite on M, that is

[S(τ ), τ ] ≥ 0 ∀ τ ∈ M;
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(iii) the linear operator B satisfies an inf-sup condition on X × M, that is, there exists β > 0
such that

sup
s∈X
s �=0

[B(s), τ ]
‖s‖X

≥ β ‖τ‖M ∀ τ ∈ M.

Then, given F ∈ X ′ and G ∈ M ′, there exists a unique solution (t, σ ) ∈ X × M of

[A(t), s] + [B∗(σ ), s] = [F, s] ∀ s ∈ X,
[B(t), τ ] − [S(σ ), τ ] = [G, τ ] ∀ τ ∈ M.

In addition, the following estimates hold

‖t‖X ≤ C1

{
‖F‖X ′ + ‖G‖M ′ + ‖A(0)‖X ′

}
,

‖σ‖M ≤ C2

{
‖F‖X ′ + ‖G‖M ′ + ‖A(0)‖X ′

}
,

where

C1 := 1

α
+ ‖B‖

α
C2 and C2 := γ 2

αβ2

(
1 + ‖B‖

α

)
.

Proof See [20, Lemma 2.1], where it is easy to show the last estimates from expressions
(2.8) and (2.9) in [20]. ��
3.2 Main Result

In order to prove existence and uniqueness of solution of (2.11), we now introduce the
nonlinear mapping Th : Hh × Vh → Hh × Vh that, given ((rh, ρh),wh) ∈ Hh × Vh , defines
Th((rh, ρh),wh) := ((th, σ h),uh) ∈ Hh × Vh as the unique solution of the problem

[Ah(th, σ h), (sh, τ h)] + [Bh(sh, τ h),uh] = [Fh, (sh, τ h)] ∀ (sh, τ h) ∈ Hh,

[Bh(th, σ h), vh] − [Sh(uh), vh] = [Gh, vh] + [Ch(wh), vh] ∀ vh ∈ Vh .

Note that actually Th((rh, ρh),wh) depends only on the third component wh ∈ Vh . In
addition, bearing in mind Lemmas 3.5, 3.6, 3.7 and 3.8, it follows from Theorem 3.1 that Th

is well-defined and there holds

‖(th, σ h)‖Hh ≤ ĈaC̃ B(f, g) + 2Ĉ2
1 Ĉaτ ‖wh‖0,�, (3.14)

and

‖uh‖0,� ≤ ĈbC̃ B(f, g) + 2Ĉ2
1 Ĉbτ ‖wh‖0,�, (3.15)

where

C̃ := 1 + κ2 + τh0Ĉ2 + c1/2
1 Ĉ3(1 + τ)1/2,

Ĉa := 1

CSM

(
1 + (1 + τ Ĉ1)Ĉb

)
,

Ĉb := C2
LC

CSMC2
inf

(
1 + 1 + τ Ĉ1

CSM

)
,

and the constants Ĉ1, Ĉ2, and Ĉ3 are those from Lemma 3.10. Observe here that the identity
Ah(0, 0) = (0, 0) and Lemma 3.11 have been employed to establish the estimates (3.14) and
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(3.15). Also, we remark that the relevance of the introduction of Th has to do with the fact
that any eventual solution of (2.11) becomes a fixed point of Th and conversely. Moreover,
the following lemma establishes that Th is indeed a contraction mapping and hence, thanks
to the Banach Fixed-Point Theorem, it has a unique fixed point in Hh × Vh .

Lemma 3.12 Assume that the parameter τ lies in
(
0, 1

θ

)
, where

θ :=
(

2Ĉ2
1

CSM

)(
CLC

Cinf

)(
1 + CLC

Cinf

)
> 0.

Then, Th is a contraction.

Proof Given ((th, σ h),uh), ((̃th, σ̃ h), ũh), ((rh, ρh),wh), and ((̃rh, ρ̃h), w̃h) in Hh × Vh

such that

Th((rh, ρh),wh) = ((th, σ h),uh) and Th((̃rh, ρ̃h), w̃h) = ((̃th, σ̃ h), ũh),

we know from the definition of Th that

[Ah(th, σ h)− Ah (̃th, σ̃ h), (sh, τ h)] + [Bh(sh, τ h),uh − ũh] = 0, (3.16a)

[Bh(th − t̃h, σ h − σ̃ h), vh] − [Sh(uh − ũh), vh] = [Ch(wh − w̃h), vh],
(3.16b)

for all ((sh, τ h), vh) ∈ Hh ×Vh . Next, taking (sh, τ h) = (th −̃th, σ h −σ̃ h) and vh = uh −ũh ,
we obtain from (3.16) that

[Ah(th, σ h)− Ah (̃th, σ̃ h), (th, σ h)− (̃th, σ̃ h)]
+ [Sh(uh − ũh),uh − ũh] = −[Ch(wh − w̃h),uh − ũh]. (3.17)

Then, using the strong monotonicity of Ah , the fact that Sh is positive semidefinite, and the
boundedness of Ch [cf. (3.13)], we deduce from (3.17) that

‖(th, σ h)− (̃th, σ̃ h)‖2
Hh

≤ 2τ Ĉ2
1

CSM
‖wh − w̃h‖0,� ‖uh − ũh‖0,�. (3.18)

On the other hand, employing the inf-sup condition for Bh (cf. Lemma 3.7), (3.16a), and the
Lipschitz-continuity of Ah (cf. Lemma 3.6), we find that

‖uh − ũh‖0,� ≤ 1

Cinf
sup

(sh ,τh )∈Hh
(sh ,τh ) �=0

|[Bh(sh, τ h),uh − ũh]|
‖(sh, τ h)‖Hh

,

= 1

Cinf
sup

(sh ,τh )∈Hh
(sh ,τh ) �=0

| − [Ah(th, σ h)− Ah (̃th, σ̃ h), (sh, τ h)]|
‖(sh, τ h)‖Hh

,

≤ CLC

Cinf
‖(th, σ h)− (̃th, σ̃ h)‖Hh ,

which, together with (3.18), implies that

‖(th, σ h)− (̃th, σ̃ h)‖Hh ≤
(

2τ Ĉ2
1

CSM

)(
CLC

Cinf

)
‖wh − w̃h‖0,�
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and

‖uh − ũh‖0,� ≤
(

2τ Ĉ2
1

CSM

)(
CLC

Cinf

)2

‖wh − w̃h‖0,�.

In this way, we conclude that

‖Th((rh, ρh),wh)−Th((̃rh, ρ̃h), w̃h)‖Hh×Vh ≤ L ‖((rh, ρh),wh)−((̃rh, ρ̃h), w̃h)‖Hh×Vh ,

with L := τθ . Finally, since Cinf ,CLC, and CSM, are independent of τ > 0, we can choose
τ ∈ (0, 1

θ

)
, which insures that Th is a contraction and completes the proof. ��

Now we are ready to establish the main result of this section.

Theorem 3.2 Assume that

0 < τ < min

{
1

θ
,

1

2

(
CSM

(1 + CSM)θ + Ĉ1

)}
.

Then, there exists a unique ((th, σ h),uh) ∈ Hh × Vh solution of (2.11). Moreover, there
holds

‖(th, σ h)‖�h ≤ Ca B(f, g) and ‖uh‖0,� ≤ Cb B(f, g),

where

Ca := Ĉa (C̃ + 2Ĉ2
1 Cbτ) and Cb := 2ĈbC̃ .

Proof The unique solvability of (2.11) follows straightforwardly from its equivalence with
the fixed-point equation for Th , the corresponding Banach Theorem, and the fact that Th

becomes a contraction when τ < 1
θ

(cf. Lemma 3.12). Then, denoting by ((th, σ h),uh) ∈
Hh × Vh the unique solution of (2.11), we have from (3.14) and (3.15) that

‖(th, σ h)‖Hh ≤ ĈaC̃ B(f, g) + 2Ĉ2
1 Ĉaτ ‖uh‖0,� (3.19)

and

‖uh‖0,� ≤ ĈbC̃ B(f, g) + 2Ĉ2
1 Ĉbτ ‖uh‖0,�. (3.20)

It remain to handle the second term on the right-hand side of (3.20). For this purpose, we
now note that

2Ĉ2
1 Ĉbτ = 2Ĉ2

1
C2

LC

CSMC2
inf

(
1 + 1 + τ Ĉ1

CSM

)
τ

=
(

2Ĉ2
1

CSM

)(
CLC

Cinf

)(
CLC

Cinf

)(
1 + 1 + τ Ĉ1

CSM

)
τ

≤ θ

(
1 + 1 + τ Ĉ1

CSM

)
τ =

(
θ + θ + (θτ )Ĉ1

CSM

)
τ

which, using the assumption on τ , gives

2Ĉ2
1 Ĉbτ <

(
θ + θ + Ĉ1

CSM

)
τ =

(
(1 + CSM)θ + Ĉ1

CSM

)
τ <

1

2
.

In this way, replacing the foregoing inequality back into (3.20), we deduce that

‖uh‖0,� ≤ 2ĈbC̃ B(f, g) = Cb B(f, g),
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which, together with (3.19), yields

‖(th, σ h)‖Hh ≤ (ĈaC̃ + 2Ĉ2
1 ĈaCbτ

)
B(f, g) = Ca B(f, g),

thus completing the proof of the theorem. ��

4 A-Priori Error Analysis

We now aim to derive the a priori error estimates for the augmented HDG scheme (2.11). We
begin by remarking that the eventual extension to the present nonlinear case of the projection-
based error analysis developed in [11] (see also [14]) does not seem straightforward, precisely
because of the nonlinearity, and hence in what follows we adopt a more classical approach.
Next, since u ∈ L2(�) and ∇u = t ∈ L

2(�) [cf. (2.4)], we observe that actually u ∈ H1(�),
which guarantees that the jump [[u ]] vanish on any interior face of Th and there holds {{u}} = u.
In addition, since σ = ψ(∇u) − pI ∈ L

2(�) and div(σ ) = −f in �, with f ∈ L2(�), we
conclude that σ ∈ H(div;�), whence [[σ ]] = 0 on each F ∈ E i

h . Then, it is easy to check
that (t, σ ,u) satisfies the equations of (2.11), and then we obtain the error equations

[Ah(t, σ )− Ah(th, σ h), (sh, τ h)] + [Bh(sh, τ h),u − uh] = 0 ∀ (sh, τ h) ∈ Hh,

(4.1a)

[Bh((t, σ )− (th, σ h)), vh] − [Sh(u − uh), vh] − [Ch(u − uh), vh] = 0 ∀ vh ∈ Vh . (4.1b)

The following result establishes the Céa estimate for (2.5) and (2.11).

Lemma 4.1 Assume that

0 < τ < min

{
1

θ
,

1

2

(
CSM

(1 + CSM)θ + Ĉ1

)
,

1

ϑ

}
,

with θ > 0 defined in Lemma 3.12 and

ϑ := 2

(
1 + CLC

CSM

)(
CLC

Cinf

)(
Ĉ1 + 2Ĉ2

2

Cinf

)
> 0.

Let (t, σ ,u) ∈ L
2(�) × H(div;�) × L2(�) and ((th, σ h),uh) ∈ Hh × Vh be the unique

solutions of (2.5) and (2.11), respectively. Then, there hold the Céa error estimates

‖(t, σ )− (th, σ h)‖Hh ≤ 2

(
1 + CLC

CSM

)(
1 + ‖Bh‖

Cinf

)
inf

(sh ,τ h)∈Hh
‖(t, σ )− (sh, τ h)‖Hh

+
{‖Bh‖

CSM
+
{

1 +
(

1 + CLC

CSM

) ‖Bh‖
Cinf

}(
Cinf

CLC

)}
inf

vh∈Vh
‖u − vh‖0,�, (4.2)

and

‖u − uh‖0,� ≤ 2

(
1 + CLC

CSM

)(
CLC

Cinf

)(
1 + ‖Bh‖

Cinf

)
inf

(sh ,τ h)∈Hh
‖(t, σ )− (sh, τ h)‖Hh

+ 2

{
1 +

(
1 + CLC

CSM

) ‖Bh‖
Cinf

}
inf

vh∈Vh
‖u − vh‖0,�. (4.3)

Proof We proceed as in [33, Proposition 4.1]. In fact, we first set Hh = H̃h ⊕ H̃⊥
h , with H̃h

being the kernel of Bh . Hence, given (sh, τ h) ∈ Hh , we let (rh, ρh) ∈ H̃⊥
h be the unique

solution of
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[Bh(rh, ρh), vh] = [Bh((t, σ )− (sh, τ h))− Sh(u − uh)− Ch(u − uh), vh] ∀ vh ∈ Vh,

which there exists thanks to the discrete inf-sup condition and the continuity of Bh . Then,
there holds

Cinf ‖(rh, ρh)‖Hh ≤ sup
vh∈Vh
vh �=0

[Bh(rh, ρh), vh]
‖vh‖0,�

= sup
vh∈Vh
vh �=0

[Bh((t, σ )− (sh, τ h))− Sh(u − uh)− Ch(u − uh), vh]
‖vh‖0,�

≤ ‖Bh‖ ‖(t, σ )− (sh, τ h)‖Hh + { ‖Sh‖ + ‖Ch‖ } ‖u − uh‖0,�

that is

‖(rh, ρh)‖Hh ≤ ‖Bh‖
Cinf

‖(t, σ )− (sh, τ h)‖Hh +
{‖Sh‖ + ‖Ch‖

Cinf

}
‖u − uh‖0,�. (4.4)

Also, note by construction of (rh, ρh) ∈ H̃⊥
h and (4.1b) that there holds

[Bh((sh, τ h)+ (rh, ρh)− (th, σ h)), vh] = 0 ∀ vh ∈ Vh . (4.5)

Next, applying the strong monotonicity of Ah and (4.1a), we get

CSM ‖(sh, τ h)+ (rh, ρh)− (th, σ h)‖2
Hh

≤ [Ah((sh, τ h)+ (rh, ρh))− Ah(th, σ h), (sh, τ h)+ (rh, ρh)− (th, σ h)]
= [Ah((sh, τ h)+ (rh, ρh))− Ah(t, σ ), (sh, τ h)+ (rh, ρh)− (th, σ h)]

+ [Ah(t, σ )− Ah(th, σ h), (sh, τ h)+ (rh, ρh)− (th, σ h)]
= [Ah((sh, τ h)+ (rh, ρh))− Ah(t, σ ), (sh, τ h)+ (rh, ρh)− (th, σ h)]

− [Bh((sh, τ h)+ (rh, ρh)− (th, σ h)),u − uh].

In turn, it follows from (4.5) that we can replace uh by vh ∈ Vh in the foregoing expression
involving Bh , and hence we obtain

CSM ‖(sh, τ h)+ (rh, ρh)− (th, σ h)‖2
Hh

≤ [Ah((sh, τ h)+ (rh, ρh))− Ah(t, σ ), (sh, τ h)+ (rh, ρh)− (th, σ h)]
− [Bh((sh, τ h)+ (rh, ρh)− (th, σ h)),u − vh]

≤ CLC ‖(sh, τ h)+ (rh, ρh)− (t, σ )‖Hh ‖(sh + rh, τ h + ρh)− (th, σ h)‖Hh

+ ‖Bh‖ ‖(sh, τ h)+ (rh, ρh)− (th, σ h)‖Hh ‖u − vh‖0,�,

which yields

‖(sh, τ h)+ (rh, ρh)− (th, σ h)‖Hh ≤ CLC

CSM
‖(t, σ )− (sh, τ h)− (rh, ρh)‖Hh

+ ‖Bh‖
CSM

‖u − vh‖0,�.
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Thus, by triangle inequality we deduce that

‖(t, σ )− (th, σ h)‖Hh ≤ ‖(t, σ )− (sh, τ h)− (rh, ρh)‖Hh

+‖(sh, τ h)+ (rh, ρh)− (th, σ h)‖Hh

≤
(

1 + CLC

CSM

)
‖(t, σ )− (sh, τ h)− (rh, ρh)‖Hh + ‖Bh‖

CSM
‖u − vh‖0,�

≤
(

1 + CLC

CSM

)
‖(t, σ )− (sh, τ h)‖Hh +

(
1 + CLC

CSM

)
‖(rh, ρh)‖Hh

+ ‖Bh‖
CSM

‖u − vh‖0,�,

which, together with (4.4) and the fact that (sh, τ h) ∈ Hh and vh ∈ Vh are arbitrary, imply

‖(t, σ )− (th, σ h)‖Hh ≤
(

1 + CLC

CSM

)(
1 + ‖Bh‖

Cinf

)
inf

(sh ,τ h)∈Hh
‖(t, σ )− (sh, τ h)‖Hh

+ ‖Bh‖
CSM

inf
vh∈Vh

‖u − vh‖0,� +
(

1 + CLC

CSM

)(‖Sh‖ + ‖Ch‖
Cinf

)
‖u − uh‖0,�. (4.6)

On the other hand, using the inf-sup condition for Bh , (4.1a), and the Lipschitz-continuity of
Ah , we find that for each vh ∈ Vh there holds

Cinf ‖vh − uh‖0,� ≤ sup
(sh ,τh )∈Hh
(sh ,τh ) �=0

[Bh(sh, τ h), vh − uh]
‖(sh, τ h)‖Hh

= sup
(sh ,τh )∈Hh
(sh ,τh ) �=0

[Bh(sh, τ h), vh − u] + [Bh(sh, τ h),u − uh]
‖(sh, τ h)‖Hh

= sup
(sh ,τh )∈Hh
(sh ,τh ) �=0

[Bh(sh, τ h), vh − u] − [Ah(t, σ )− Ah(th, σ h), (sh, τ h)]
‖(sh, τ h)‖Hh

≤ ‖Bh‖ ‖u − vh‖0,� + CLC ‖(t, σ )− (th, σ h)‖Hh ,

which, together with an application of the triangle inequality, gives

‖u − uh‖0,� ≤
(

1 + ‖Bh‖
Cinf

)
inf

vh∈Vh
‖u − vh‖0,� + CLC

Cinf
‖(t, σ )− (th, σ h)‖Hh . (4.7)

Next, by substituting (4.6) into (4.7), we arrive at

‖u − uh‖0,� ≤
(

1 + CLC

CSM

)(
CLC

Cinf

)(
1 + ‖Bh‖

Cinf

)
inf

(sh ,τ h)∈Hh
‖(t, σ )− (sh, τ h)‖Hh

+
{

1 +
(

1 + CLC

CSM

) ‖Bh‖
Cinf

}
inf

vh∈Vh
‖u − vh‖0,�

+
(

1 + CLC

CSM

)(
CLC

Cinf

)(‖Sh‖ + ‖Ch‖
Cinf

)
‖u − uh‖0,�.

In turn, we know from Lemma 3.11 that ‖Sh‖ ≤ τ Ĉ1 and ‖Ch‖ ≤ 2τ Ĉ2
1 , and hence, recalling

that τ < 1
ϑ

, we deduce that

(
1 + CLC

CSM

)(
CLC

Cinf

)(‖Sh‖ + ‖Ch‖
Cinf

)
≤
(

1 + CLC

CSM

)(
CLC

Cinf

)(
Ĉ1 + 2Ĉ2

1

Cinf

)
τ <

1

2
,
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which allows to conclude from the previous inequality that

‖u − uh‖0,� ≤ 2

(
1 + CLC

CSM

)(
CLC

Cinf

)(
1 + ‖Bh‖

Cinf

)
inf

(sh ,τ h)∈Hh
‖(t, σ )− (sh, τ h)‖Hh

+ 2

{
1 +

(
1 + CLC

CSM

) ‖Bh‖
Cinf

}
inf

vh∈Vh
‖u − vh‖0,�. (4.8)

Finally, it is easy to see that (4.6) and (4.8) provide (4.2) and (4.3), thus finishing the proof.
��

Next, in order to provide the rate of convergence of the discontinuous Galerkin scheme
(2.11), we need the approximation properties of the finite element subspaces involved. For
this purpose, given T ∈ Th , we let P k

T : L
2(T ) → Pk(T ) and Pk−1

T : L2(T ) → Pk−1(T ) be
the L

2(T ) and L2(T )− orthogonal projectors, respectively. It is well known (see, e.g. [7,18])
that for each s ∈ H

�(T ) and v ∈ H�+1(T ) there holds

‖s − P k
T (s)‖0,T ≤ Chmin{�,k+1}

T |s|�,T ∀ T ∈ Th, (4.9)

and

‖v − Pk−1
T (v)‖0,T ≤ Chmin{�+1,k}

T |v|�+1,T ∀ T ∈ Th . (4.10)

On the other hand, let�k−1
T : H

1(T ) → Pk(T ) be the Raviart–Thomas interpolation operator
(see [2,18,31]), which satisfies the approximation property

‖τ −�k−1
T (τ )‖div,T ≤ Chmin{�,k}

T

{
|τ |�,T + |div(τ )|�,T

}
∀ T ∈ Th, (4.11)

and for each τ ∈ H
�(T ) such that div(τ ) ∈ H�(T ), with � ≥ 1. Moreover, the interpolation

operator�k−1
T can also be defined as a bounded linear operator from the larger space H

�(T )∩
H(div; T ) into Pk(T ) for all � ∈ (0, 1] (see, e.g. [23, Theorem 3.16]). In this case there holds
the following interpolation error estimate (see [18, Lemma 3.19])

‖τ −�k−1
T (τ )‖0,T ≤ Ch�T

{
|τ |�,T + ‖div(τ )‖0,T

}
∀ T ∈ Th,

which, together with (4.11), implies for � > 0 that

‖τ −�k−1
T (τ )‖div,T ≤ Chmin{�,k}

T

{
|τ |�,T + ‖div(τ )‖�,T

}
∀ T ∈ Th .

On the other hand, observe that, given Z := {τ ∈ L
2(�) : τ |T ∈ H

�(T ) ∀ T ∈ Th},
we can define ��h : H(div;�) ∩ Z → �h by

��h (τ )|T := �k−1
T (τ |T ) + d I ∀ T ∈ Th,

with d := − 1
n|�|

∑
T ∈Th

∫
T tr
(
�k−1

T (τ |T )
)

∈ R. Then, it is easy to prove that

‖τ −��h (τ )‖2
�h

≤
∑

T ∈Th

‖τ −�k−1
T (τ )‖2

div,T ∀ τ ∈ H(div;�) ∩ Z ,

and hence

‖τ −��h (τ )‖�h ≤ C
∑

T ∈Th

hmin{�,k}
T

{
|τ |�,T + ‖div(τ )‖�,T

}
. (4.12)
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In this way, as a consequence of (4.9), (4.10), (4.12), and the usual interpolation estimates,
we find that Sh, �h and Vh satisfy the following approximation properties:
(APt

h) For each � ≥ 0 and for each s ∈ H
�(�) there exists sh ∈ Sh such that

‖s − sh‖0,� ≤ C
∑

T ∈Th

hmin{�,k+1}
T |s|�,T .

(APσh ) For each � > 0 and for each τ ∈ H
�(�) with div(τ ) ∈ H�(�) there exists τ h ∈ �h

such that

‖τ − τ h‖�h ≤ C
∑

T ∈Th

hmin{�,k}
T

{
|τ |�,T + ‖div(τ )‖�,T

}
.

(APu
h) For each � ≥ 0 and for each v ∈ H�(�) there exists vh ∈ Vh such that

‖v − vh‖0,� ≤ C
∑

T ∈Th

hmin{�+1,k}
T |v|�+1,T .

The following theorem establishes the theoretical rates of convergence of the discrete
scheme (2.11), under suitable regularity assumptions on the exact solution.

Theorem 4.1 Assume the same hypotheses of Lemma 4.1. In addition, suppose that there
exists an integer � > 0 such that t|T ∈ H

�(T ), σ |T ∈ H
�(T ),div(σ |T ) ∈ H�(T ) and

u|T ∈ H�+1(T ), for all T ∈ Th. Then, there exists C > 0, independent of h and the
polynomial approximation degree k, such that

‖t − th‖0,� + ‖σ − σ h‖�h + ‖u − uh‖0,�

≤ C
∑

T ∈Th

hmin{�,k}
T

{
|t|�,T + |σ |�,T + ‖div(σ )‖�,T + |u|�+1,T

}
.

Proof It follows from the Céa estimate (cf. Lemma 4.1) and the approximation properties
(APt

h), (APσh ) and (APu
h). ��

Note from the previous theorem and (3.7) that we can also conclude that

‖σ − σ h‖0,� ≤ C
∑

T ∈Th

hmin{�,k}
T

{
|t|�,T + |σ |�,T + ‖div(σ )‖�,T + |u|�+1,T

}
. (4.13)

Furthermore, we know from (2.1) that p = − 1
n tr (σ ), which suggests to define the following

postprocessed approximation of the pressure:

ph := − 1

n
tr (σ h) in �,

and therefore

‖p − ph‖0,� = 1

n
‖tr (σ − σ h) ‖0,� ≤ ‖σ − σ h‖0,�, (4.14)

which, thanks to (4.13), gives the a priori error estimate for the pressure.
Now, as in [11], we measure the errors of quantities defined on ∂Th with the seminorm:

‖μ‖h :=
⎧⎨
⎩
∑

T ∈Th

hT ‖μ‖2
0,∂T

⎫⎬
⎭

1/2

,
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and we let�Eh : L2(Eh) → Pk(Eh) be the orthogonal projection onto the space of piecewise
polynomials of degree less than or equals to k on Eh . Next, we end this section with the a
priori error estimate for the trace of the velocity unknown, which is established next.

Theorem 4.2 Assume the same hypotheses of Theorem 4.1. Then, there exists C > 0, inde-
pendent of h and the polynomial approximation degree k, such that

‖�Eh (u)− ûh‖h ≤ C
∑

T ∈Th

hmin{�,k}
T

{
|t|�,T + |σ |�,T + ‖div(σ )‖�,T + |u|�+1,T

}
.

Proof Since �Eh (u) = ��(g) = ûh on E∂h , we only need to compute the error for each
F ∈ E i

h . In fact, we have

‖�Eh (u)− ûh‖2
h =

∑
T ∈Th

∑
F∈∂T \�

hT ‖�Eh (u)− λh‖2
0,F

≤ C̃
∑

T ∈Th

∑
F∈∂T \�

h‖�Eh (u)− λh‖2
0,F = 2C̃

∑
F∈E i

h

h‖�Eh (u)− λh‖2
0,F ,

with C̃ ≥ 1 depending only on the shape regularity of the mesh. Then, according to (2.10),
(3.6) and the fact that [[σ ]] = 0 on E i

h , we obtain that

‖�Eh (u)− ûh‖2
h ≤ 2C̃

∑
F∈E i

h

h

∥∥∥∥�Eh (u)− {{uh}} + 1

2
(τh)−1[[σ h ]]

∥∥∥∥
2

0,F

≤ C
∑

F∈E i
h

{
‖h1/2 (�Eh (u)− {{uh}}) ‖2

0,F + 1

4τ
‖(τh)−1/2[[σ − σ h ]]‖2

0,F

}

≤ C
{
‖h1/2 (�Eh (u)− {{uh}}) ‖2

0,E i
h

+ ‖σ − σ h‖2
�h

}

≤ C
{
‖h1/2�Eh (u − P k

1,h(u))‖2
0,E i

h
+ ‖h1/2{{P k

1,h(u)− uh}}‖2
0,E i

h
+ ‖σ − σ h‖2

�h

}
,

(4.15)

where, denoting Xk
h := {

vh ∈ C(�̄) : vh |T ∈ Pk(T ) ∀ T ∈ Th
}
, we let P k

1,h : H1(�) →
Xk

h be the orthogonal projector, which satisfies

‖v − P k
1,h(v)‖1,� ≤ C1

∑
T ∈Th

hmin{�,k}
T |v|�+1,T ∀ v ∈ H�+1(T ), ∀ T ∈ Th (4.16)

and

‖v − P k
1,h(v)‖0,� ≤ C0

∑
T ∈Th

hmin{�+1,k+1}
T |v|�+1,T ∀ v ∈ H�+1(T ), ∀ T ∈ Th, (4.17)

for k ≥ 1 (see [18, Chapter 4] for details). Next, applying that ‖�Eh ‖ ≤ 1 in the first term of
(4.15), we find that

‖�Eh (u)− ûh‖h ≤ C
{
‖h1/2(u − P k

1,h(u))‖0,E i
h

+ ‖h1/2{{P k
1,h(u)− uh}}‖0,E i

h
+ ‖σ − σ h‖�h

}
.
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Consequently, using (3.3) and the analogue of the part i) of Lemma 3.10 with Pk(Th) instead
of Vh , we deduce that

‖�Eh (u)− ûh‖h ≤ C
{
‖u − P k

1,h(u)‖1,� + ‖P k
1,h(u)− uh‖0,� + ‖σ − σ h‖�h

}

≤ C
{
‖u − P k

1,h(u)‖1,� + ‖u − P k
1,h(u)‖0,�

+ ‖u − uh‖0,� + ‖σ − σ h‖�h

}
,

which, together with (4.16), (4.17) and Theorem 4.1, complete the proof. ��

5 Implementation Considerations

In this section we describe some general aspects on the computational implementation of the
discrete scheme proposed in Sect. 2. We remark that we refer to the original HDG system (2.9)
since, as explained before, the equivalent reduced scheme given by (2.11) was introduced
just for sake of the analysis. We begin by considering again problem (2.9) in a single element
T ∈ Th with Dirichlet’s datum g = 0 (as is usual, the boundary condition can be imposed
later), that is

∫
T
ψ(th) : sh −

∫
T

sh : σ d
h = 0,

∫
T

{
th − κ1ψ(th)

}
: τ d

h +
{
κ1

∫
T
σ d

h : τ d
h + κ2

∫
T

div(σ h) · div(τ h)

}

+
∫

T
uh · div(τ h)−

∫
∂T
τ hν · λh =−κ2

∫
T

f · div(τ h),

−
∫

T
vh · div(σ h)+

∫
∂T

Suh · vh −
∫
∂T

Sλh · vh =
∫

T
f · vh,

−
∫
∂T
σ hν · μh +

∫
∂T

Suh · μh −
∫
∂T

Sλh · μh = 0 ,

for all (sh, τ h, vh,μh) ∈ Pk(T )× Pk(T )× Pk−1(T )× Pk(∂T ).
Note that, because of the null mean value condition of the trace ofσ h , that is

∫
�

tr (σ h) = 0,
we can not establish the value of σ h |T only with the information from T (as it is natural in
discontinuous Galerkin schemes). For that reason, and in order to rewrite the above local
contribution in an equivalent form, we now define the local space

�h,0(T ) :=
{
τ ∈ Pk(T ) :

∫
T

tr (τ ) = 0

}
,

for which there holds Pk(T ) = �h,0(T ) ⊕ P0(T )I, where I ∈ Rn×n is the identity matrix.
Next, given σ h, τ h ∈ Sh , we consider the local decomposition

σ h |T = σ̃ h |T + ρh |T I and τ h |T = τ̃ h |T + ζh |T I ∀ T ∈ Th ,
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where σ̃ h |T , τ̃ h |T ∈ �h,0(T ), ρh |T , ζh |T ∈ P0(T ), and rewrite the above local contribution
as

∫
T
ψ(th) : sh −

∫
T

sh : σ̃ d
h = 0,

∫
T

{
th − κ1ψ(th)

}
: τ̃ d

h +
{
κ1

∫
T
σ̃ d

h : τ̃ d
h + κ2

∫
T

div(σ̃ h) · div(̃τ h)

}

+
∫

T
uh · div(̃τ h)−

∫
∂ T̃
τ hν · λh=−κ2

∫
T

f · div(̃τ h),

−
∫

T
vh · div(σ̃ h)+

∫
∂T

Suh · vh −
∫
∂T

Sλh · vh =
∫

T
f · vh,

−
∫
∂T
σ̃ hν · μh +

∫
∂T

Suh · μh −
∫
∂T

Sλh · μh −
∫
∂T
ρhμh · ν = 0,

−
∫
∂T
ζhλh · ν = 0 ,

for all (sh, τ̃ h, vh,μh, ζh) ∈ Pk(T )×�h,0(T )× Pk−1(T )× Pk(∂T )× P0(T ). In addition,
it is easy to see that the aforementioned condition on the trace of σ h becomes

∑
T ∈Th

ρh |T |T | = 0,

which is imposed in the discrete system by means of a real Lagrange multiplier.
Then, applying the Newton–Raphson’s method to the global nonlinear system, we translate

the local contribution for the Newton’s linear system in the mth iteration into the form

⎛
⎜⎜⎜⎜⎜⎜⎝

DA1(tm
h ) B 0 0 0

−BT − DA2(tm
h ) H C −E 0

0 −CT K −F 0
0 −ET FT −D G

0 0 0 GT 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

δtm
h

δσ̃m
h

δum
h

δλm
h

δρm
h

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

bm
1

bm
2

bm
3

bm
4

bm
5

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where δtm
h corresponds to the mth update for the th variable, that is tm+1

h = tm
h + δtm

h , and
similarly for the other variables. The discrete operators DAi (r), i ∈ {1, 2}, are the respective
Gâteaux derivatives, given by

[DA1(r)t, s] :=
∫

T

n∑
i, j,k,l=1

∂

∂rkl
ψi j (r)tkl si j =

∫
T

μ′(|r|)
|r| (r : t)(r : s) +

∫
T
μ(|r|)t : s,

and

[DA2(r)t, s] := κ1[DA1(r)t, sd],

for all r, t, s ∈ L
2(T ), with |r| = ‖r‖Rn×n �= 0. In turn, using the same notation given in

[6], the operators B,C and H are given as follows:
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B :=
[
−
∫

T
s : τ d

]
= −|JT |

⎛
⎜⎜⎝

1
2 0 0 − 1

2
0 1 0 0
0 0 1 0

− 1
2 0 0 1

2

⎞
⎟⎟⎠⊗ M,

C :=
[∫

T
v · div(τ )

]
= |JT | I ⊗

{(
∂x x̂
∂y x̂

)
⊗ DX +

(
∂x ŷ
∂y ŷ

)
⊗ DY

}
,

and

H :=
[
κ1

∫
T
σ d : τ d + κ2

∫
T

div(σ ) · div(τ )
]

= −κ1B + |JT |κ2 I ⊗
{(

(∂x x̂)2 ∂x x̂∂y x̂
∂x x̂∂y x̂ (∂y x̂)2

)
⊗ DXX +

(
∂x x̂∂x ŷ ∂x x̂∂y ŷ
∂y x̂∂x ŷ ∂y x̂∂y ŷ

)
⊗ DXY

+
(
∂x x̂∂x ŷ ∂x x̂∂y ŷ
∂y x̂∂x ŷ ∂y x̂∂y ŷ

)T

⊗ DXYT +
(
(∂x ŷ)2 ∂x ŷ∂y ŷ
∂x ŷ∂y ŷ (∂y ŷ)2

)
⊗ DYY

}
,

where ⊗ is the Kronecker product, and given a basis {ϕ̂i } of Pk(T̂ ),M := [∫
T̂ ϕ̂i ϕ̂ j

]
is the

mass matrix, DX := [∫
T̂ ϕ̂ j∂x̂ ϕ̂i

]
,DY := [∫

T̂ ϕ̂ j∂ŷ ϕ̂i
]
,DXX := [∫

T̂ ∂x̂ ϕ̂i∂x̂ ϕ̂ j
]
,DXY :=[∫

T̂ ∂x̂ ϕ̂i∂ŷ ϕ̂ j
]
, and DYY := [∫

T̂ ∂ŷ ϕ̂i∂ŷ ϕ̂ j
]
, all them precomputed on the reference cell T̂ .

In particular, when {ϕ̂i } is the Dubiner basis [17], we only need to delete the first column
in the above definition of B, the first row in C and the first row and the first column in H,
in order to hold the belonging to the space �h,0(T ). All the other discrete operators can be
calculated similarly as in [6].

It is important to note here that the local submatrix
⎛
⎝ DA1(tm

h ) B 0
−BT − DA2(tm

h ) H C
0 −CT K

⎞
⎠ ∈ R(n

2dq+(n2dq−1)+ndu)×(n2dq+(n2dq−1)+ndu),

with dq := dim Pk(T ) and du := dim Pk−1(T ), is invertible when μ > 0 and |tm
h | �= 0.

Then, as it is usual in the HDG methods, we can obtain the values of δtm
h |T , δσ̃m

h |T and δum
h |T

as functions of δλm
h |T and δρm

h |T (actually, they only depend on δλm
h |T ). In other words, we

can reduce the stencil of the global linear system on each iteration of the Newton’s method.
Finally, we let

Ntotal := (n2dq + n2dq + ndu)× (# of element in Th) + (ndl)× (# of faces in Th),

with dl := dim Pk(F), F ∈ ∂T , be the total number of degrees of freedom (without including
those for the pressure). In other words, Ntotal is the total number of unknowns defining
th, σ h,uh and λh . On the other hand, we let

Ncomp := (ndl)× (# of faces in Th) + (# of element in Th) + 1

be the number of degrees of freedom effectively employed in the computations, i.e, the total
number of unknowns defining λh, ρh and the Lagrange multiplier.

6 Numerical Results

In this section we present several numerical experiments illustrating the performance of
the augmented HDG method introduced in Sect. 2. We set τ = 10−1 for each one of the
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Table 3 Example 2, some errors for different values of τ

h k τ = 10−1 τ = 100 τ = 101 τ = 102 τ = 103

‖σ − σ h‖0,�

0.0571 1 4.9118e−2 6.5855e−2 2.8347e−1 2.3974e−0 1.7163e+1

0.0571 2 9.8544e−4 1.3358e−3 6.2561e−3 5.5194e−2 3.8630e−1

0.0667 3 4.5751e−5 5.5785e−5 2.3936e−4 2.1504e−3 1.5109e−2

0.0667 4 2.9174e−6 2.9876e−6 5.7542e−6 4.6312e−5 3.4693e−4

‖u − uh‖0,�

0.0571 1 1.3626e−1 1.3649e−1 1.3717e−1 1.5542e−1 2.7216e−1

0.0571 2 4.8468e−3 5.2903e−3 5.7489e−3 5.8752e−3 6.8390e−3

0.0667 3 1.9632e−4 2.3910e−4 3.0923e−4 3.3322e−4 3.7520e−4

0.0667 4 4.6136e−6 5.8874e−6 7.1539e−6 7.4307e−6 7.8061e−6

‖�Eh
(u)− ûh‖h

0.0571 1 4.1323e−3 6.8604e−3 3.3457e−2 2.3303e−1 7.6095e−1

0.0571 2 2.1471e−5 3.8337e−5 2.0965e−4 1.8313e−3 1.2478e−2

0.0667 3 7.5312e−7 1.1598e−6 6.2942e−6 5.6190e−5 3.7855e−4

0.0667 4 3.8092e−8 4.0211e−8 1.0500e−7 9.0616e−7 6.6465e−6

4 examples to be reported, which, as shown below, works fine in all the cases. An a pri-
ori verification of the hypotheses on τ in Lemma 4.1 would certainly require the explicit
knowledge of all the constants involved, which, however, is rarely possible. On the other
hand, we take the stabilization parameter κ1 = α0

γ 2
0

, which obviously satisfies the assumption

κ1 ∈
(

0, 2α0
γ 2

0

)
in Lemma 3.6, and then, as suggested by the value of the strong monotonic-

ity constant CSM at the end of its proof, we simply choose κ2 = κ1
2 . The corresponding

nonlinear algebraic system arising from (2.9) is solved by the Newton method with a tol-
erance of 10−6 and taking as initial iteration the solution of the associated linear Stokes
problem (four iterations were required to achieve the given tolerance in each example).
Now, according to the definitions given in Sect. 5, we recall that Ntotal is the total num-
ber of degrees of freedom, and Ncomp is the number of degrees of freedom involved in the
implementation of the Newton’s method. To this respect, and even though we understand
that a meaningful comparison makes sense between the Ncomp of two different methods, in
Example 4 below we display the information concerning Ncomp and Ntotal only to appreci-
ate the reduction in the degrees of freedom provided by our method, which is one of the
key aspects of the HDG approaches. We do not perform any comparison with other method
since we are not aware of another HDG type procedure dealing with our nonlinear prob-
lem.

The numerical results presented below were obtained using a C + + code, which was devel-
oped following the same techniques from [6]. In turn, the linear systems are solved using the
conjugate gradient method with a relative tolerance of 10−6.

In Example 1 we follow [11,30] and consider the linear Stokes problem given by the flow
uncovered by Kovaszany [26]. This means that � := (−0.5, 1.5)× (0, 2), μ = 0.1, and the
data f and g are chosen so that the exact solution is given by
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Table 5 History of convergence for Example 4

k h Ntotal Ncomp ‖t − th‖0,� ‖σ − σ h‖0,� ‖σ − σ h‖�h

Error Order Error Order Error Order

1 0.3464 71100 15601 4.30e−1 − 4.35e−1 − 7.21e−0 −
0.2474 194040 41749 2.22e−1 1.96 2.30e−1 1.88 5.19e−0 0.98
0.1925 411156 87481 1.35e−1 1.98 1.43e−1 1.91 4.06e−0 0.98
0.1732 563400 119401 1.10e−1 2.00 1.16e−1 1.97 3.65e−0 1.01
0.1332 1235052 259585 6.52e−2 1.98 6.94e−2 1.95 2.82e−0 0.98
0.1083 2299392 480769 4.32e−2 1.99 4.60e−2 1.97 2.29e−0 0.99
0.0962 3271752 682345 3.41e−2 2.00 3.64e−2 1.99 2.04e−0 1.00

2 0.3464 173700 30451 4.43e−2 − 3.94e−2 − 1.15e−0 −
0.2474 474516 81439 1.70e−2 2.85 1.49e−2 2.89 6.17e−1 1.86
0.1925 1006020 170587 8.14e−3 2.92 7.13e−3 2.94 3.77e−1 1.96
0.1732 1378800 232801 6.15e−3 2.66 5.51e−3 2.44 3.27e−1 1.34
0.1332 3023748 505987 2.78e−3 3.03 2.44e−3 3.10 1.86e−1 2.15
0.1083 5630976 936961 1.50e−3 2.97 1.31e−3 3.01 1.21e−1 2.07
0.0962 8013168 1329697 1.06e−3 2.92 9.24e−4 2.95 9.61e−2 1.96

3 0.3464 342000 50251 5.96e−3 − 6.29e−3 − 2.55e−1 −
0.2474 934920 134359 1.92e−3 3.38 2.13e−3 3.22 1.16e−1 2.33
0.1925 1982880 281395 8.53e−4 3.22 9.92e−4 3.04 6.79e−2 2.14
0.1732 2718000 384001 5.33e−4 4.47 6.75e−4 3.65 4.75e−2 3.38
0.1332 5962320 834523 1.88e−4 3.97 2.41e−4 3.94 2.16e−2 3.00
0.1083 11105280 1545217 8.22e−5 3.98 1.05e−4 3.99 1.16e−2 2.99
0.0962 15804720 2192833 5.15e−5 3.96 6.61e−5 3.93 8.18e−3 2.98

k h Ntotal Ncomp ‖u − uh‖0,� ‖�Eh
(u)− ûh‖h ‖p − ph‖0,�

Error Order Error Order Error Order

1 0.3464 71100 15601 2.64e−1 − 1.66e−1 − 1.86e−1 −
0.2474 194040 41749 1.89e−1 0.99 8.54e−2 1.98 1.01e−1 1.82
0.1925 411156 87481 1.48e−1 0.99 5.18e−2 1.99 6.29e−2 1.87
0.1732 563400 119401 1.33e−1 1.00 4.20e−2 2.00 5.12e−2 1.95
0.1332 1235052 259585 1.02e−1 1.00 2.49e−2 1.99 3.08e−2 1.94
0.1083 2299392 480769 8.31e−2 1.00 1.65e−2 2.00 2.05e−2 1.97
0.0962 3271752 682345 7.39e−2 1.00 1.30e−2 2.00 1.62e−2 1.98

2 0.3464 173700 30451 4.03e−2 − 6.07e−3 − 1.33e−2 −
0.2474 474516 81439 2.07e−2 1.98 1.75e−3 3.70 4.61e−3 3.14
0.1925 1006020 170587 1.26e−2 1.99 6.66e−4 3.84 2.13e−3 3.08
0.1732 1378800 232801 1.02e−2 1.99 4.72e−4 3.26 1.60e−3 2.72
0.1332 3023748 505987 6.04e−3 1.99 1.62e−4 4.07 6.95e−4 3.18
0.1083 5630976 936961 3.99e−3 2.00 7.09e−5 3.99 3.65e−4 3.10
0.0962 8013168 1329697 3.15e−3 2.00 4.48e−5 3.89 2.55e−4 3.04

3 0.3464 342000 50251 4.39e−3 − 6.88e−4 − 1.63e−3 −
0.2474 934920 134359 1.61e−3 2.98 1.62e−4 4.31 4.96e−4 3.54
0.1925 1982880 281395 7.60e−4 2.99 5.67e−5 4.16 2.25e−4 3.14
0.1732 2718000 384001 5.55e−4 2.99 3.20e−5 5.44 1.43e−4 4.31
0.1332 5962320 834523 2.53e−4 2.99 8.67e−6 4.97 5.02e−5 3.99
0.1083 11105280 1545217 1.36e−4 3.01 3.08e−6 4.98 2.20e−5 3.97
0.0962 15804720 2192833 9.53e−5 3.00 1.72e−6 4.96 1.39e−5 3.93

u(x) =
(

1 − exp(λx1) cos(2πx2),
λ

2π
exp(λx1) sin(2πx2)

)
,

p(x) = 1

2
exp(2λx1) − 1

8λ

{
exp(3λ)− exp(−λ)

}
,
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Fig. 1 Example 2, uh,1 for k = 2 (top-left), for k = 3 (top-right), and its exact value (bottom)

Fig. 2 Example 2, uh,2 for k = 2 (top-left), for k = 3 (top-right), and its exact value (bottom)
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Fig. 3 Example 2, σh,11 (top-left) σh,22 (top-right) for k = 2, and its exact values (bottom)

Fig. 4 Example 3, uh,1 (top-left) and uh,2 (top-right) for k = 2, and its exact values (bottom)
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Fig. 5 Example 3, σh,11 (top-left) and σh,22 (top-right) for k = 2, and its exact values (bottom)

Fig. 6 Example 3, th,11 (top-left) and th,22 (top-right) for k = 2, and its exact values (bottom)
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Fig. 7 Example 4, iso-surfaces of uh,1 (top-left) and uh,3 (top-right) for k = 2, and its exact values (bottom)

for all x := (x1, x2)
t ∈ �, where λ := Re

2 −
√

Re2

4 + 4π2 and Re := μ−1 = 10 is
the Reynolds number. It is easy to see in this linear case that α0 = γ0 = μ. Concerning
the triangulations employed in our computations, we first consider seven meshes that are
Cartesian refinements of a domain defined in terms of squares, and then we split each square
into four congruent triangles.

In Example 2 we deal with the nonlinear version of Example 1. More precisely, we consider
instead of μ = 0.1 the kinematic viscosity function μ : R+ → R+ given by the Carreau
law, that is μ(t) := μ0 + μ1(1 + t2)(β−2)/2 ∀ t ∈ R+, with μ0 = μ1 = 0.5 and β = 1.5.
It is easy to check in this case that the assumptions (2.2) and (2.3) are satisfied with

γ0 = μ0 + μ1

{ |β − 2|
2

+ 1

}
and α0 = μ0 .

Then, we let again � := (−0.5, 1.5)× (0, 2), and choose the data f and g so that the exact
solution is the same from Example 1. The set of triangulations utilized is also as in Example
1.

Next, in Example 3 we use the same nonlinearity μ from Example 2, consider the L-
shaped domain� := (−1, 1)2 \ [0, 1]2, and choose the data f and g so that the exact solution
is given by
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Fig. 8 Example 4, iso-surfaces of σh,11 (top-left) and σh,32 (top-right) for k = 2, and its exact values (bottom)

u(x) =
(
r2/3 sin(θ), −r2/3 cos(θ)

)
,

p(x) = cos(x1) cos(x2) − sin2(1) ,

for all x := (x1, x2)
t ∈ �, where r := |x| =

√
x2

1 + x2
2 and θ := arctan

(
x2
x1

)
. We remark

that ∇u is singular at the origin, and hence lower rates of convergence are expected in our
computations. The meshes are generated analogously to the previous examples.

Finally, in Example 4 we consider the three dimensional domain � := (0, 1)3, and
assume the same kinematic viscosity functionμ from Examples 2 and 3. In addition, the data
f and g are chosen so that the exact solution is given by

u(x) =
(
x1(sin(2πx3)− sin(2πx2)), x2(sin(2πx1)− sin(2πx3)),

x3(sin(2πx2)− sin(2πx1))) ,

p(x) = x1x2x3 sin(2πx1) sin(2πx2) sin(2πx3) + 1

8π3 ,

for all x := (x1, x2, x3)
t ∈ �.

It is easy to check that u is divergence free and
∫
�

p = 0 for each one of the aforedescribed

examples.
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It is important to remark here that we do not provide any postprocessing for the velocity
u in the numerical results shown below. Nevertheless, we can report that we did perform
some preliminary numerical experiments by using the postprocessing formulas given in [12],
which yielded exactly the same order of uh , that is O(hk), and hence no superconvergence
was observed. The alternative formula given in [11] will be considered in a forthcoming
related work.

In Tables 1 and 2 we summarize the convergence history of the augmented HDG method
(2.9) as applied to Examples 1 and 2 for the polynomial degrees k ∈ {1, 2, 3

}
. We observe

there, looking at the experimental rates of convergence, that the orders predicted for each k
by Theorems 4.1 and 4.2, and estimates (4.13) and (4.14), are attained by all the unknowns
for these smooth examples. Actually, the errors ‖σ −σ h‖�h and ‖u −uh‖0,� behave exactly
as proved, whereas the remaining ones show higher orders of convergence. In particular,
‖�Eh (u) − ûh‖h presents a superconvergence phenomenon with two additional powers of
h. In addition, it is interesting to notice that these numerical results provide the same rates of
convergence obtained for the linear case in [11], and hence they might constitute numerical
evidences supporting the conjecture that the a priori error estimates derived in the present
paper are not sharp. We plan to address this issue in a separate work. Nevertheless, as already
mentioned at the beginning of Sect. 4, whether the projection-based error analysis developed
in [11] will work or not in this nonlinear case is still an open problem.

Furthermore, preliminary numerical experiments for Example 2, using degree k instead
of k − 1 in the definition of the subspace Vh , showed that the convergence rates are the same
of Table 2. Perhaps, the only advantages of this modification with respect to the approach
of the present paper are the possibility of using the polynomial degree k = 0 and the fact
that the superconvergence behavior of the variable λh is recovered when k = 1. The above
could very well mean that the restriction k ≥ 1 and the degree k − 1 for defining Vh are
just technical assumptions of our analysis. On the other hand, even though the estimates
given in Sect. 4 hold for τ small enough, the results provided in Table 3 for Example 2
insinuate the robustness of our method within a larger, but still limited, range of variability
of this parameter. Indeed, we observe there that for fixed values of k and h, the errors
of some variables behave pretty much of the same order when larger values of τ (up to
τ = 10) are employed. However, while for even larger values of the parameter such as
τ ∈ {100, 1000} the method does not break down, we notice that in this case some errors
begin to increase.

In Table 4 we summarize the convergence history of the augmented HDG method (2.9) as
applied to Example 3 for the polynomial degrees k ∈ {1, 2, 3

}
. In this case, and because of the

singularity at the origin of the exact solution, the theoretical orders of convergence are far to be
attained. In fact, similarly as obtained in [6], ‖u−uh‖0,� behaves as O(hmin{k,4/3}), whereas
‖t − th‖0,� = O(h2/3). Also, ‖σ − σ h‖0,� = O(h2/3), ‖�Eh (u)− ûh‖h = O(hmin{k,4/3}),
and thanks to (4.14), ‖p − ph‖0,� = O(h2/3) as well. Moreover, the behaviour of
‖σ − σ h‖�h is explained by the fact that the a priori estimate for ‖σ − σ h‖�h depends
on the regularity of div(σ ), which can be shown to belong precisely to H−1/3(�). A
classical way of circumventing this drawback is the incorporation of an adaptive scheme
based on a posteriori error estimates. This issue will also be addressed in a forthcoming
paper.

On the other hand, in Table 5 we present the convergence history of the augmented HDG
method (2.9) as applied to Example 4 for the polynomial degrees k ∈ {1, 2, 3

}
. The remarks

in this case are exactly the same given above for Examples 1 and 2.
Finally, some components of the approximate and exact solutions for Examples 2, 3, and

4 are displayed in Figures 1, 2, 3, 4, 5, 6, 7 and 8. They all correspond to those obtained
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with the fourth mesh and for the polynomial degree k indicated in each case. Here we use
the notations th = (th,i j )i, j=1,n, σ h = (σh,i j )i, j=1,n , and uh = (uh,i )i=1,n .

Acknowledgments The authors are thankful to Paul Castillo and Manuel Solano for valuable remarks
concerning the computational implementation of the HDG method.

References

1. Baranger, J., Najib, K., Sandri, D.: Numerical analysis of a three-fields model for a quasi-Newtonian flow.
Comput. Methods Appl. Mech. Eng. 109, 281–292 (1993)

2. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)
3. Bustinza, R., Gatica, G.N.: A local discontinuous Galerkin method for nonlinear diffusion problems with

mixed boundary conditions. SIAM J. Sci. Comput. 26, 152–177 (2004)
4. Bustinza, R., Gatica, G.N.: A mixed local discontinuous Galerkin for a class of nonlinear problems in

fluid mechanics. J. Comput. Phys. 207, 427–456 (2005)
5. Carrero, J., Cockburn, B., Schötzau, D.: Hybridized, globally divergence-free LDG methods. Part I: the

Stokes problem. Math. Comp. 75, 533–563 (2006)
6. Castillo, P.E., Sequeira, F.A.: Computational aspects of the local discontinuous Galerkin method on

unstructured grids in three dimensions. Math. Comput. Model. 57, 2279–2288 (2013)
7. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Nort-Holland, Amsterdam (1978)
8. Clement, P.: Un Problème d’approximation Par éléments Finis, PhD thesis, Ecole Polytechnique Fédérale

de Lausane (1973)
9. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-

order elliptic problems. Math. Comp. 77, 1887–1916 (2008)
10. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed

and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–
1365 (2009)

11. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of HDG methods for
Stokes flow. Math. Comput. 80, 723–760 (2011)

12. Cockburn, B., Gopalakrishnan, J., Sayas, F.J.: A projection-based error analysis of HDG methods. Math.
Comp. 79, 1351–1367 (2010)

13. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order
elliptic problems. Math. Comp. 78, 1–24 (2009)

14. Cockburn, B., Shi, K.: Devising HDG methods for Stokes flow: an overview. Comput. Fluids 98, 221–229
(2014)

15. Cockburn, B., Shu, C.: The local discontinuous Galerkin method for time-dependent convection-diffusion
systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

16. Congreve, S., Houston, P., Süli, E., Whiler, T.P.: Discontinuous Galerkin finite element approximation
of quasilinear elliptic boundary value problems II: strongly monotone quasi-Newtonian flows. IMA J.
Numer. Anal. 33, 1386–1415 (2013)

17. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)
18. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method: Theory and Applications,

SpringerBriefs in Mathematics. Springer, Berlin (2014)
19. Gatica, G.N., González, M., Meddahi, S.: A low-order mixed finite element method for a class of quasi-

Newtonian Stokes flows. I: a priori error analysis. Comput. Methods Appl. Mech. Eng. 193, 881–892
(2004)

20. Gatica, G.N., Heuer, N., Meddahi, S.: On the numerical analysis of nonlinear twofold saddle point
problems. IMA J. Numer. Anal. 23, 301–330 (2003)

21. Gatica, G.N., Márquez, A., Sánchez, M.A.: A priori and a posteriori error analyses of a velocity-
pseudostress formulation for a class of quasi-Newtonian Stokes flows. Comput. Methods Appl. Mech.
Eng. 200, 1619–1636 (2011)

22. Girault, V., Raviart, P. A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms,
Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

23. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)
24. Houston, P., Robson, J., Süli, E.: Discontinuous Galerkin finite element approximation of quasilinear

elliptic boundary value problems. I. The scalar case. IMA J. Numer. Anal. 25, 726–749 (2005)
25. Howell, J.S.: Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using

trace-free velocity gradients. J. Comput. Appl. Math. 231, 780–792 (2009)

123



J Sci Comput

26. Kovasznay, L.I.G.: Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44, 58–62
(1948)

27. Ladyzhenskaya, O.: New equations for the description of the viscous incompressible fluids and solvability
in the large for the boundary value problems of them. In: Boundary Value Problems of Mathematical
Physics V, Providence, RI: AMS (1970)

28. Loula, A.F.D., Guerreiro, J.N.C.: Finite element analysis of nonlinear creeping flows. Comput. Methods
Appl. Mech. Eng. 99, 87–109 (1990)

29. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin
method for nonlinear convection-diffusion equations. J. Comput. Phys. 228, 8841–8855 (2009)

30. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow.
Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)

31. Roberts, J. E., Thomas, J. M.: Mixed and Hybrid Methods. In: Ciarlet, P.G., Lions, J.L. (eds). Handbook
of Numerical Analysis, vol. II, Finite Element Methods (Part 1). Nort-Holland, Amsterdam (1991)

32. Sandri, D.: Sur l’approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la
loi puissance ou la loi de Carreau. Math. Model. Numer. Anal. 27, 131–155 (1993)

33. Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer.
Anal. 40, 2171–2194 (2003)

123


	Analysis of an Augmented HDG Method for a Class of Quasi-Newtonian Stokes Flows
	Abstract
	1 Introduction
	2 The Augmented HDG Method
	2.1 The Hybridizable Discontinuous Galerkin Method
	2.2 The Augmented HDG Formulation

	3 Solvability Analysis
	3.1 Preliminaries
	3.2 Main Result

	4 A-Priori Error Analysis
	5 Implementation Considerations
	6 Numerical Results
	Acknowledgments
	References


