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ABSTRACT

Waves in a thin layer on a rotating sphere are studied. The effect of
a toroidal magnetic field is considered, using the shallow water ideal
MHD equations. The work is motivated by suggestions that there is
a stably stratified layer below the Earth’s core mantle boundary, and
the existence of stable layers in stellar tachoclines. With an azimuthal
background field known as the Malkus field, Bφ = B0sinθ , θ being
the co-latitude, a non-diffusive instability is found with azimuthal
wavenumber m = 1. A necessary condition for instability is that the
Alfvén speed exceeds Ω0R0 where Ω0 is the rotation rate and R0 the
sphere radius. Magneto-inertial gravity waves propagating westward
and eastward occur, and become equatorially trapped when the field
is strong. Magneto-Kelvin waves propagate eastward at low field
strength, but a newwestward propagating Kelvinwave is foundwhen
the field is strong. Fastmagnetic Rossbywaves travel westward, whilst
the slowmagnetic Rossby waves generally travel eastward, except for
some m = 1 modes at large field strength. An exceptional very slow
westward m = 1 magnetic Rossby wave mode occurs at all field
strengths. The current-driven instability occurs for m = 1 when the
slow and fast magnetic Rossby waves interact. With strong field the
magnetic Rossby waves become trapped at the pole. An asymptotic
analysis giving the wave speed and wave form in terms of elementary
functions is possible both in polar trapped and equatorially trapped
cases.
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1. Introduction

Waves are ubiquitous in geophysical and astrophysical fluids. For many such systems the
interaction of rotation and stratification leads naturally to the propagation of wave modes
at a wide range of frequencies. Waves are known to play an important role in neutral fluids
such as the Earth’s ocean and atmosphere with inertial waves (and near-inertial waves)
believed to play a role in transport,mixing anddissipation in the ocean,whilst gravitywaves
are vital in transferring energy, momentum and species between different atmospheric
layers and also influence upper atmosphere winds, turbulence, temperature and chemistry
in Earth’s oceans and atmosphere (see e.g. Vallis 2006). Global scale planetary waves such
as Rossby waves are known to have an influence on terrestrial weather and potentially
climate and have been implicated in playing a potential role in generating mean zonal
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flows on gas giants such as Jupiter and Saturn (see e.g. Grazzini and Vitart 2015, Legarreta
et al. 2016).

For electrically conducting fluids in geophysics and astrophysics the magnetic field will
strongly influence the wave dynamics. Though rotating magnetohydrodynamic waves can
be important in convectively unstable environments, their role is complicated owing to
the presence of turbulence. In stably stratified environments these waves can play a similar
role in transport and driving to their hydrodynamic counterparts.

Rotating MHD waves have been extensively studied in the context of the Earth’s fluid
outer core, which is believed to be the seat of the geodynamo. Following early work by
Hide Hide (1969) and Acheson and Hide (1973) there have been many investigations (see
e.g. Finlay et al. 2010). Of particular interest for the current investigation is the proposed
presence of a stably stratified layer at the Core-Mantle Boundary (CMB). This layer was
theoretically predicted by Braginsky (1998), who discussed the nature of some of the waves
that might be found in such a layer. In particular, he established that the existence of this
stable stratified layer a the top of the corewould permit the propagation ofmagnetic Rossby
waves and suggested that this oscillation might be related to short time-scale geomagnetic
secular variation, length of day variation and oscillation of the pole position. Interestingly,
there is now significant observational evidence that such a layer exists. Analysing seismic
velocities profiles, Helffrich and Kaneshima (2010), observed a reduction in wave speeds
just below the CMB of the Earth; these differences suggest the presence of a stably stratified
layer of about 300 km in thickness at the top of the core.

The presence of wave-modes in the stably stratified interior of the Sun has also recently
received renewed attention. The solar tachocline is a thin layer of strong radial and latitu-
dinal differential rotation at the base of the solar convection zone that has been revealed by
helioseismology (see e.g. Spiegel and Zahn 1992, Tobias 2015, Miesch 2005, Christensen-
Dalsgaard andThompson 2007). The tachocline is believed to play an important role
in the generation of the eleven year activity cycle through dynamo action. Theoretical
investigation of the tachocline has shown that it is the potential seat of many MHD
instabilities including magnetic buoyancy instabilities (Hughes 2007), double-diffusive
shear instabilities (see e.g. Rashid et al. 2008) and joint instabilities of the differential
rotation and toroidal magnetic field (which we shall discuss in more detail later) (Gilman
and Fox 1997, Gilman and Dikpati 2002, Cally 2003, Cally et al. 2008, Hollerbach and
Cally 2009). The presence and importance of wave motions has recently been emphasised
by McIntosh and collaborators who have utilised 360◦ imaging observations to detect the
presence of Rossby-like motions in the Sun’s interior that are critical carriers of solar
activity (Mcintosh et al. in press). Recent investigations of waves in the solar interior
include those that focus on the interaction of internal gravity waves with magnetic fields,
(see e.g. MacGregor and Rogers 2011, Mathis and de Brye 2011) in the radiative interior
and those that look at local and global waves in the thin tachocline (Schecter et al. 2001,
Zaqarashvili et al. 2007, Zaqarashvili et al. 2009, Heng and Spitkovsky 2009). These final
investigations utilised the Shallow Water Magnetohydrodynamic equations (and model
extensions thereof) introduced by Gilman (2000), which form the basis of this current
investigation. A related strand of work is that of Sharif and Jones (2005) where the motion
in the thin layer is assumed to be completely two-dimensional. This can be viewed as the
limit of large buoyancy frequency in the shallow water system.
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Final motivation for the study of waves in thin magnetised, stably stratified shells
comes from the dynamics of atmospheres of exoplanets located close to their parent stars
(sometimes called Hot Jupiters). It is possible that for these systems the ionosphere of the
planet may extend downwards significantly into the atmosphere, making it necessary to
includeMHDeffects into the stably stratified dynamics of these layers (Cho 2008, Koskinen
et al. 2010, Koskinen et al. 2014).

In this paper we derive a description of the wave modes in a magnetised shallow water
environment; there are three types of solutions: Magneto-Rossby waves, Magneto-Inertial
gravity (MIG) waves and Kelvin modes. These oscillations are affected by rotation and the
magnetic field through the parameters ε = 4Ω2

0R
2
0/gH0 and α = v2A/4Ω2

0R
2
0. where Ω0,

H0 and vA are the rotation rate, the height of the layer and the Alfvén speed, respectively.
The precise value of these non-dimensional parameters in any given astrophysical situation
is uncertain and probably these can only be estimated to an order of magnitude. Moreover
these parameters vary according to position. For example, the effective gravity in the layer
varies significantly in the solar interior; in the tachocline there exist regions of high effective
gravity (in the radiative layer) and lower effective gravity (in the overshoot region.) This
will probably be the case for all stars with both a convecting layer and a stably stratified
layer as the stratification must move from being essentially adiabatic in the convection
layer to strongly subadiabatic in the stable layer. In the Earth, there is probably also a
gradual transition from convection to stable stratification but this is difficult to characterise
either theoretically or observationally via seismology. For this reason, rather than limiting
attention on parameters believed to be relevant to either stellar or planetary interiors we
give a full description of the wave modes in such systems as the parameters α and ε

are varied, including many asymptotic limits, where the modes become trapped either at
the poles or the equator. We also demonstrate how current-driven instabilities may arise
through the interaction of two wave modes. Care should be taken in applying the results
of the analysis here to any individual astrophysical object, owing both to the uncertainty
in the correct parameters and to the simplified nature of the model presented here. The
present work aims to describe the waves and instability types that can provide a guide to
more realistic, but more complicated, models of particular objects where only numerical
analysis is possible.

This paper is organised as follows. In Section 2, we present the MHD Shallow Water
equations for a given toroidalmagnetic field and linearise the systemof equations. Solutions
are developed as expansions of Associated Legendre polynomials, which are reduced to
a set of eigenvalue matrix equations as detailed in Section 3. Section 4 is a summary
of the hydrodynamic case, when the magnetic field is zero, which has been extensively
studied by Longuet-Higgins (1968). In Section 5 we discuss the new numerical results in
the magnetohydrodynamic case, and in Section 6 asymptotic theories are developed for
cases when either the ε or α parameters are large and the waves are either equatorially or
polar trapped. The conclusions are in Section 7.

2. Mathematical formulation of the problem

2.1. Shallowwater equations inmagnetohydrodynamics

The classical shallow water approximation of geophysical fluid dynamics, mentioned in
the introduction above, can also be applied to a stratified layer of electrically conducting
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fluid. Gilman (2000) established the shallow water MHD equations with a strong toroidal
magnetic field,

∂ B
∂t

+ (u·∇)B = (B·∇)u, (1a)

∂u
∂t

+ (u·∇)u + 2Ω × u = 1
μ0ρ

(B·∇)B − g∇H , (1b)

∂H
∂t

+ ∇·(Hu) = 0, ∇·(HB) = 0. (1c,d)

In these equations u and B represent the horizontal components of the velocity and
magnetic field respectively. The operator ∇ is the horizontal gradient, ρ is the density of
the fluid, μ0 is the permeability of free space and H is the thickness of the layer.

There are a number of choices that need to be made to define a basic state on which the
waves can propagate. Among these are the latitudinal profile for the magnetic field, height
field, effective gravity, mean zonal flows and stresses on the layer from adjacent convecting
layers. A range of mean profiles has been examined for both wave and instability problems
in both the continuously stratified and shallow water models. For example, Tayler (1973,
1980) and Pitts and Tayler (1985) have considered the stability of magnetic fields in a
continuously stratified layer where the force balance is maintained by imposing a position
dependent gravity and pressure field. Within the hydrodynamic continuously stratified
setting a basic state may be maintained via a latitudinal temperature gradient and a radial
shear (often termed a thermal wind) (Rashid et al. 2008). Magnetohydrostatic balancemay
also bemaintained by imposing a zonal jet in the stably stratified layer (Rempel et al. 2000).
Within the confines of the shallow water MHD approximation a basic state may also be
achieved by balancing the magnetic stress by an externally imposed stress that keeps the
axisymmetric (average) part of the height field constant (Zaqarashvili et al. 2007) or by
modifying the basic state height or effective gravity (Dikpati andGilman 2001,Dikpati et al.
2003). All of these ingredients may be chosen in a plausible manner, though there is a great
deal of latitude in the construction of the model.

For this reason we consider a simple model for which analytical progress may be made
in asymptotic limits. We follow Zaqarashvili et al. (2007) in considering an unperturbed
toroidal magnetic field

B = Bφ êφ ,

and its perturbation is
b′ = bθ êθ + bφ êφ.

The velocity perturbation corresponds to

u = uθ êθ + uφ êφ ,

and the perturbed layer thickness is

H = H0 + h,

where H0 the basic state height is constant. We are therefore ignoring possible departures
from sphericity of the constant pressure surfaces, and variations ofH0 with latitude, which
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might be significant when the field is very strong. We note also that the imposition of a
purely toroidal magnetic field requires the presence of an imposed current; in the Earth’s
core this current would connect to dynamo generated currents deep in the core and close
in a thin diffusive layer near the CMB. In the tachocline case, currents associated with a
strong belt of field in the tachocline might close in the radiative interior and the base of
the convection zone. However, modelling these more complicated currents would greatly
increase the complexity of the problem, and so they are not addressed here.

The linearised equations in spherical coordinates are, Zaqarashvili et al. (2007), but note
a typographic error in their Equation (31),

∂uθ

∂t
− 2Ω0 cos θuφ + g

R0
∂h
∂θ

− Bφ

μ0ρR0 sin θ

∂bθ

∂φ
+ 2

Bφ

μ0ρR0
cos θ
sin θ

bφ = 0, (2a)

∂uφ

∂t
+2Ω0 cos θuθ + g

R0 sin θ

∂h
∂φ

− bθ

μ0ρR0
∂Bφ

∂θ
− Bφ

μ0ρR0 sin θ

∂bφ

∂φ
− Bφ

μ0ρR0
cos θ
sin θ

bθ = 0,

(2b)
∂h
∂t

+ H0

R0 sin θ

∂

∂θ
( sin θuθ ) + H0

R0 sin θ

∂uφ

∂φ
= 0, (2c)

∂bθ

∂t
− Bφ

R0 sin θ

∂uθ

∂φ
= 0, (2d)

∂bφ

∂t
+ 1

R0
∂

∂θ
(uθBφ) = Bφ

R0 sin θ

{
∂

∂θ
(uθ sin θ) + ∂uφ

∂φ

}
. (2e)

In the above set of equations a toroidal magnetic field Bφ = B0 sin θ was proposed by
Zaqarashvili et al. (2007), andwe adopt this here. This field can be generated in a full sphere
by a uniform current in the z-direction, parallel to the rotation axis. The MHD waves for
this field were studied by Malkus (1967) in the case of a full unstratified sphere.

The energy of our small perturbations comprises kinetic, potential andmagnetic energy,
so

E =
∫ 2π

0

∫ π

0

[
ρ

2
(
u2θ + u2φ

)+ gρ
2H0

h2 + 1
2μ0

(
b2θ + b2φ

)]
sin θ dθ dφ, (3)

and we can deduce from Equations (2a)–(2e) that

∂E
∂t

=
∫ 2π

0

∫ π

0

[
2B0 cos θ

μ0R0
(uφbθ − uθbφ)

]
sin θ dθ dφ. (4)

In the nonmagnetic case, the disturbance energy is constant, and since it has a positive
definite form, it is not possible for unstable growing modes to occur. However, in the
magnetic case it is possible for the disturbance energy to grow, so unstable modes are
possible in this system. As we shall see below, for some parameter values only wave-like
disturbances are possible, but for other values instability can occur.

3. Method for determining the eigenvalues and eigenvectors

The solutions are in the form eimφ−iωt , where φ is the longitude, m is the azimuthal wave
number and t is the time, which leads to a set of five coupled ordinary differential equations
with θ as the independent variable. We express these in dimensionless form, using 2Ω0R0
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as the velocity scale and B0 as the magnetic field scale, to obtain, defining μ = cos θ and
the differential operator D = − sin θ∂/∂θ = (1 − μ2)∂/∂μ,

− λũθ + μũφ + Dη − mα2b̃θ − 2α2μb̃φ = 0, (5a)

λũφ − μũθ − mη + mα2b̃φ + 2α2μb̃θ = 0, (5b)
λε(1 − μ2)η + Dũθ − mũφ = 0, (5c)

λb̃θ + mũθ = 0, (5d)

λb̃φ + mũφ = 0. (5e)

Here these scaled variables, which are now functions of θ only, are related to the
dimensional variables by

uθ = Re
{
2iΩ0R0ũθ

sin θ
ei(mφ−λt)

}
, bθ = Re

{
iB0b̃θ

sin θ
ei(mφ−λt)

}
, (6a,b)

uφ = Re
{
2Ω0R0ũφ

sin θ
ei(mφ−λt)

}
, bφ = Re

{
B0b̃φ

sin θ
ei(mφ−λt)

}
, (6c,d)

h = Re

{
4Ω2

0R
2
0η

g
ei(mφ−λt)

}
, (6e)

and the dimensionless parameters and the dimensionless frequency are

ε = 4Ω2
0R

2
0

gH0
, α2 = v2A

4Ω2
0R

2
0
, where v2A = B20

μ0ρ
, λ = ω

2Ω0
. (7a–d)

From (5d,e) we see that for axisymmetric m = 0 modes, the magnetic field perturbations
are zero, so that there is no difference between the magnetic and non-magnetic case for
m = 0 modes. Since them = 0 modes are discussed in Longuet-Higgins (1968), we do not
consider them further here.

The solutions for the dependent variables are taken as expansions of Associated Leg-
endre Polynomials, following Longuet-Higgins (1968), remembering that each expansion
must have n ≥ m because the polynomials are not defined for n < m,

ũθ =
∞∑

n=m
Am
n P

m
n (μ), b̃θ =

∞∑
n=m

Bmn P
m
n (μ), (8a,b)

ũφ =
∞∑

n=m
Cm
n P

m
n (μ), b̃φ =

∞∑
n=m

Dm
n P

m
n (μ), (8c,d)

η =
∞∑

n=m
Emn P

m
n (μ). (8e)
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Some properties of associated Legendre polynomials are used:

μPmn = (n + m)

(2n + 1)
Pmn−1 + (n − m + 1)

(2n + 1)
Pmn+1,

DPmn = (n + 1)(n + m)

(2n + 1)
Pmn−1 − n(n − m + 1)

(2n + 1)
Pmn+1.

Substituting the expansions of the dependent variables into Equations (5a–e) and then
using the properties of the associated Legendre Polynomials, we obtain a set of equations.
In each equation we must set the coefficient of Pmn (μ) to zero, and we then obtain the
following equations for the coefficients in our expansion, Am

n , Bmn , Cm
n , Dm

n , Emn :

−λAm
n =mα2Bmn − qn−1Cm

n−1 + 2α2qn−1Dm
n−1 + (n − 1)qn−1Emn−1

− pn+1Cm
n+1 + 2α2pn+1Dm

n+1 − (n + 2)pn+1Emn+1, (9a)
λCm

n =mEmn − mα2Dm
n + qn−1Am

n−1

− 2α2qn−1Bmn−1 − 2α2pn+1Bmn+1 + pn+1Am
n+1, (9b)

λ
[
ε(1 − pnqn−1 −qnpn+1)Emn − εpn+2pn+1Emn+2 − εqn−1qn−2Emn−2

]
=mCm

n − (n + 2)pn+1Am
n+1 + (n − 1)qn−1Am

n−1, (9c)
λBmn = − mAm

n , (9d)
λDm

n = − mCm
n , (9e)

where qn = (n − m + 1)/(2n + 1) and pn = (n + m)/(2n + 1).

3.1. Parity of themodes

Equations (9a–e) have a special parity. For a given m, the coefficients Am
n and Bmn with

n even are related only to the Cm
n , Dm

n and Emn coefficients with n odd. Similarly, the
coefficients Am

n and Bmn with n odd are related only to the Cm
n ,Dm

n and Emn coefficients with
n even. The equations therefore form two distinct sets. We solve each set separately using
a MATLAB eigenvalue and eigenvector solver, designed to solve the system of equations
Av = λBv.

The associated Legendre polynomials are symmetric about the equator if n−m is even,
and antisymmetric if n − m is odd. Of the two sets of modes with different parities, we
call the set with ũθ and b̃θ symmetric about the equator the sinuous modes, since fluid will
flow northwards at the equator in some locations and southward in others. For a sinuous
(or kink) mode η, ũφ and b̃φ are antisymmetric about the equator, and the expansions for
ũθ and b̃θ in (17) start with Am

m, and Bmm, while the expansions for ũφ , b̃φ and η start with
Cm
m+1, D

m
m+1 and Emm+1 respectively. The other set of modes are the varicose (or sausage)

modes. These have ũθ and b̃θ antisymmetric about the equator, so no flow or field crosses
the equator for varicose modes. The varicose modes have η, ũφ and b̃φ symmetric about
the equator, and the expansions for ũθ and b̃θ in (17) start with Am

m+1 and B
m
m+1, while the

expansions for ũφ , b̃φ and η start with Cm
m , Dm

m and Emm .
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3.2. Normalisation and numerical method

In our dimensionless units the energy (3) takes the form

E = 2πρΩ2
0R

4
0

∫ π

0

[ |ũθ |2 + |ũφ|2
sin2 θ

+ α2 |b̃φ |2 + |b̃θ |2
sin2 θ

+ ε|η|2
]
sin θ dθ. (10)

For a purely wave-like disturbance this energy is constant in time. Following Longuet-
Higgins (1968), we set the energy

E ≡ 2πρHoΩ
2
0R

4
0.

Substituting this into (10) we obtain

∫ π

0

[ |ũθ |2 + |ũφ|2
sin2 θ

+ α2 |b̃φ |2 + |b̃θ |2
sin2 θ

+ ε|η|2
]
sin θ dθ = 1, (11)

which defines the way in which our eigenfunctions are normalised.
In the case when there are unstable waves, the energy is not constant, but nevertheless

(11) continues to provide a convenient normalisation. We let λ = λr + iσ , where σ is the
dimensionless growth rate, and in terms of the dimensionless variables we can write (4) as

σ

∫ π

0

[ |ũθ |2 + |ũφ|2
sin2 θ

+ α2 |b̃φ|2 + |b̃θ |2
sin2 θ

+ ε|η|2
]
sin θdθ

= α2
∫ π

0
i(ũ∗

θ b̃φ + ũ∗
φ b̃θ − ũθ b̃∗

φ − ũφb∗
θ )
cos θ
sin θ

dθ. (12)

For neutrally stable waves, the scaled (tilde) variables are pure real, so the right hand
side is zero, consistent with σ = 0. We can use (5d) and (5e) to simplify (12) to obtain

σ

∫ π

0

[ |ũθ |2 + |ũφ|2
sin2 θ

+α2 (|b̃φ|2 + |b̃θ |2)
sin2 θ

+ε|η|2+α2 cos θ
m sin2 θ

(b̃∗
θ b̃φ+b̃∗

φ b̃θ )

]
sin θ dθ = 0.

(13)
It is clear that for growing modes, the last magnetic term in the integral in this equation
must be negative, to balance the other positive definite terms coming from the disturbance
energy.

The numerical procedure to solve the eigenvalue problem is to truncate the expansions
in (17) and to then derive a matrix eigenvalue equation which is solved using MATLAB.
We illustrate using the sinuous mode case, the program for the varicose mode case being
similar. We set

ũθ =
N−1∑
n=0

Am
m+2nP

m
m+2n(μ) eimφ−iωt , b̃θ =

N−1∑
n=0

Bmm+2nP
m
m+2n(μ) eimφ−iωt , (14a,b)

ũφ =
N∑
n=1

Cm
m+2n−1P

m
m+2n−1(μ) eimφ−iωt , b̃φ =

N∑
n=1

Dm
m+2n−1P

m
m+2n−1(μ) eimφ−iωt ,

(14c,d)
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η =
N∑
n=1

Em+2n−1nmPmm+2n−1(μ) eimφ−iωt . (14e)

We then use Equations (5a–e) to derive a 5N × 5N algebraic eigenvalue problem to obtain
5N approximate eigenvalues λ. The eigenvectors emerging from our MATLAB must be
normalised to satisfy (11), so we use the unnormalised eigenvectors to evaluate

E′ =
N∑
n=1

N∑
k=1

[(
Am
m+2n−2A

m
m+2k−2 + α2Bmm+2n−2B

m
m+2kn−2

)
Imm+2n−2,m+2k−2

+ (
Cm
m+2n−1C

m
m+2k−1 + α2Dm

m+2n−1D
m
m+2n−1

)
Imm+2n−1,m+2k−1

]

+
N∑
n=1

εEmm+2n−1E
m
m+2n−1

2(2m + 2n − 1) !
(2m + 4n − 11)(2n − 1) ! , (15)

where¯denotes complex conjugate. The integral in the last equation has an exact formula
given by

Imnk =
∫ 1

−1

Pmn (x)Pmk (x)
(1 − x2)

dx = (n + m) !
m(n − m) ! ,

for n < k when n and k have the same parity,

Imnk =
∫ 1

−1

Pmn (x)Pmk (x)
(1 − x2)

dx = (k + m) !
m(k − m) ! ,

for k < n when n and k have the same parity, and Imnk = 0 when n and k have different
parity. We then divide the eigenvectors by

√
E′ to obtain normalised eigenvectors that

satisfy (11). We then use (14a,b) to construct the eigenfunctions corresponding to each
eigenvalue. Only the eigenvalues corresponding to eigenvectors which drop off rapidly as
n increases are reliable converged solutions. We therefore constructed a criterion based
on the relative magnitude of the sum of the squares of components above and below
n = N/2. Only solutions with the great majority of the power in the lower half of the
spectrum were accepted. For these acceptable solutions increasing N did not change the
eigenvalue significantly.

For the sinuous modes, the values of n for the coefficientsAm
n and Bmn are n = m,m+ 2,

m+ 4, . . ., and for Cm
n ,Dm

n and Emn they are n = m+ 1,m+ 3,m+ 5, . . .. For the varicose
modes, the index runs in the opposite way, following the parity rules in Section 3.1.

3.3. Second order ODE formulation

When using asymptotic methods, it is convenient to start with the system in the form of
a single second order equation. Two equations proved useful, one for the variable ũθ , the
other for the variable η. Although these are both complicated, they are useful because they
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can be simplified in a number of limits to give well-known equations. The equation for ũθ

can be written

(1 − μ2)
d2ũθ

dμ2 + 2m2

(λ2 − α2m2)ε(1 − μ2) − m2μ
dũθ

dμ

+
[
ε(λ2 − α2m2) − m(λ + 2mα2)

(λ2 − α2m2)
− ε

(λ + 2mα2)2

(λ2 − α2m2)
μ2

− m2

1 − μ2 − 2εm(λ + 2mα2)μ2

(λ2 − α2m2)ε(1 − μ2) − m2

]
ũθ = 0, (16)

and equation for η is

(1 − μ2)
d2η
dμ2 + 2

(
(λ + 2mα2)2(1 − μ2)

(λ2 − m2α2)2 − (λ + 2mα2)2μ2 − 1
)

μ
dη

dμ

+
[−m(λ + 2mα2)

(λ2 − m2α2)
− m2

1 − μ2 + ε

(
(λ2 − m2α2) − (λ + 2mα2)2μ2

λ2 − m2α2

)

+ 2m(λ + 2mα2)(λ2 − m2α2)

(λ2 − m2α2)2 − (λ + 2mα2)2μ2

]
η = 0. (17)

We note here that, if one defines

L = (λ2 − m2α2)

(λ + 2mα2)
, E = ε

(λ2 − m2α2)

L2
,

then (17) reduces to

(1−μ2)
d2η
dμ2+2

(1 − L2)
(L2 − μ2)

μ
dη

dμ
+
[−m

L
− m2

1 − μ2+E(L2−μ2)+ 2mL
L2 − μ2

]
η = 0. (18)

This is an apparent simplification from four to three independent parameters. However L
and E can not be considered as input parameters as they both depend on the eigenvalue λ.

4. Hydrodynamic case

In the absence of magnetic field, the set of five equations reduces to three equations, the
Laplace tidal equations which have been extensively studied by Longuet-Higgins (1968).
He found two different kind of waves when ε is small: gravity waves and Rossby waves.
Gravity waves are produced by the action of gravity on the interface giving the restoring
force in the system. They are common in stably stratified layers of fluid and can propagate
either vertically or horizontally, Gill (1982). Note that though our model has a sharp
interface at the boundary of the stable layer, the horizontal propagation of gravity waves
in a continuously stratified system behaves similarly. In the limit ε → 0 their dispersion
relation has the form

ω = ±
√
n(n + 1)gH0

R0
, and so λ = ±

√
n(n + 1)

ε
(19a,b)



GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 11

and the eigenfunctions become surface spherical harmonics (Longuet-Higgins 1968), i.e.
the coupling between adjacent harmonics becomes negligible. The parameter n is the
degree of the spherical harmonic, and so gives the number of nodes in the latitudinal
direction. As ε increases, rotation becomes important and the gravity modes turn into
inertia-gravity waves, and the eigenfunctions are no longer simple spherical harmonics,
but the parameter n is still useful in classifying the eigenfunctions, and we continue to use
it as did Longuet-Higgins (1968).

The Rossby waves are produced by the effect of the rotation of the fluid system. In the
Earth, they arise from the latitudinal variation of theCoriolis force, 2Ω × u. The dispersion
relation of these waves is

ω = − 2Ω0m
n(n + 1)

and λ = − m
n(n + 1)

. (20a,b)

From the minus sign it is clear that these waves travel to the west. Their frequency is
independent of ε.

When ε is large, the solution is confined to the neighbourhood of the equator where the
limit μ2 
 1 is valid, Longuet-Higgins (1968). Then, there are three dispersion relations
for the approximated solutions. The dispersion relation for gravity waves is

λ = ± (2ν + 1)1/2

ε1/4
+ m

ε1/2(4ν + 2)
for integer ν ≥ 0. (21)

The parameter ν is the eigenvalue of the parabolic cylinder function, see Longuet-Higgins
(1968) and Section 6.1.1. ν gives the number of nodes in the latitudinal direction in the
trapped case.

The dispersion relation of Rossby waves at large ε has the formula

λ = − m
ε1/2(2ν + 1)

for integer ν ≥ 1. (22)

As noted by Longuet-Higgins (1968) the ν = 0 case does not lead to a valid asymptotic
solution. Finally, the Kelvin waves have the dispersion relation given by

λ ∼ m
ε1/2

. (23)

Kelvin waves have the property that the northward velocity ûθ tends to zero rapidly as ε

increases, and the waves are equatorially trapped.
An interesting question is how the different nmodes in the small ε theory connect to the

different ν modes in the large ε theory as ε is gradually increased. For eastward propagating
gravity modes, the frequencies evolve continuously from the n value in (19a,b) with the +
sign to the

ν = n − m − 1 eastward propagating gravity waves (24)

solutionwith the plus sign in (21). An exceptional case is the n = mmode in (19a,b), which
evolves into the Kelvinmode at large ε. The westward gravity waves given by (19a,b) evolve
into the equatorially trapped gravity waves given by (21) with

ν = n − m + 1 westward propagating gravity waves (25)



12 X. MÁRQUEZ-ARTAVIA ET AL.

for all n ≥ m. The westward Rossby waves given by (20a,b) at small ε evolve into large ε

equatorially trapped Rossby wave solutions given by (22) with ν = n−m. However, since
ν = 0 is not available in (22), the n = m Rossby mode at small ε evolves continuously
into the ν = 0 gravity mode given by (21). This exceptional mode is known as a mixed
Rossby-gravity wave. In this way, there is one-to-one matching between the solutions at
small ε given by (19a,b) and (20a,b) and the large ε solutions given by (21)–(23).

Generally, there was good agreement between our numerical results and those of
Longuet-Higgins (1968), except for some slight differences in the trapped cases, where
a resolution higher than that available to Longuet-Higgins (1968) was required to get full
accuracy. Generally the solutions converge when the expansions are truncated at N = 40.

5. Magnetohydrodynamic case: numerical solutions

Wenow consider the effect of themagnetic field using our eigenvalue code. The parameters
we can vary are ε, the azimuthal wavenumber m, and the parameter α which measures
the magnetic field strength. A truncation parameter N = 70 was found to be adequate to
resolve all the modes displayed in our figures. The effect of the magnetic field is to split the
hydrodynamic Rossby waves into two modes: slow and fast magnetic Rossby modes. The
Kelvin waves and the gravity are also affected by themagnetic field.We call the branch that
develops from the gravity waves MIG waves, as they are inertio-gravity waves, in which
Coriolis and gravity forces are important, combined with the magnetic Lorentz force.

Numerical dispersion diagrams computed for α = 0.1 and m = 1 are shown in
Figure 1, with λ = ω/2Ω0 plotted against ε−1/2 = √

gH0/2Ω0R0. Figure 1(a) shows
the eastward propagating waves: theMIGwaves in dotted-red, the Kelvinmode in dashed-
green and the slow magnetic Rossby waves in solid blue. The MIG waves form an infinite
sequence with increasing frequency and a corresponding increase in the number of nodes
in the latitudinal direction. Only the lowest two MIG modes are shown in Figure 1(a).

The MIG eigenfunction sequence is shown in Figure 2(a) where ũθ / sin θ is plotted as a
function of co-latitude. The lowest frequencymode (solid blue) is a sinuousmode, the next
is a varicose mode (dashed green), and the next sinuous mode (dotted red) is also shown.
From Figure 1(a) we see that as ε → 0 the MIG wave frequencies scale linearly with ε−1/2

showing that their frequency in this low rotation limit scales with
√
gH0/R0 indicating

their gravity wave character. The Kelvin mode is exceptional, only a single varicose mode,
and it too scales with

√
gH0/R0 at small rotation, as do non-magnetic Kelvin waves. The

eigenfunction for the Kelvin mode is shown in Figure 2(b). The eastward propagating
slow magnetic Rossby waves are shown in solid blue in Figure 1(a). These waves have no
counterpart in the non-magnetic case, and their frequency tends to zero as α → 0. In
the slow rotation limit ε → 0 the slow magnetic Rossby wave dispersion curve levels out,
showing that the frequency scales with rotation rate for these waves. The eigenfunctions
for the slow magnetic Rossby waves are shown in Figure 3(b). The sequence alternates
between sinuous modes and varicose (or sausage) modes with the slowest mode being a
varicose mode, the next slowest a sinuous mode, and then comes a second varicose mode.
As is shown in Figure 2(a), the blue solid curve has two nodes in latitude, the green dashed
line three nodes and the dotted red one four nodes. There is, of course, a complete sequence
of increasing number of nodes as well as increasing frequencies.
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Figure 1. Dispersion relation λ = ω/2Ω0 as a function of 1/ε1/2 = √
gH0/2Ω0R0, for α = 0.1 and

m = 1. (a) Waves travelling eastward: the red dotted curves are Magneto-Inertial-Gravity waves, the
green dashed line is the Kelvin mode, whereas the blue solid lines correspond to slow magnetic Rossby
modes. (b) Waves travelling westwards: the red dotted curves are two Magneto-Inertial-Gravity modes.
The higher solid black curve is the mixed Rossby-gravity wave, and the lower black solid curve is a fast
magnetic Rossby wave.
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Figure 2. Eigenfunctions ũθ / sin θ against co-latitude, form = 1,N = 50, α = 0.1 and ε = 1 . (a) MIG
waves travelling eastwards, the fastest and slowest being sinuous modes, the intermediate frequency
wave being a varicose mode. When the frequency increases the number of nodes increases too. (b)
Kelvin mode which is a varicose mode.

In Figure 1(b) we show some westward propagating waves. The MIG waves behave
similarly to the eastward propagating MIG waves, and as ε → 0 the frequencies occur
in pairs, one eastward, one westward as expected since rotation plays no role for MIG
waves in this limit. The two black solid curves are fast magnetic Rossby waves. In the limit
as α → 0 these merge into the hydrodynamic Rossby waves found by Longuet-Higgins
(1968).

Figure 3(a) shows the first three fast magnetic Rossby modes, a sinuous mode without
nodes is the blue solid curve, the fastest of these waves, the green dashed line is a varicose
mode with one node and the red dotted curve is a second sinuous mode with two nodes.



14 X. MÁRQUEZ-ARTAVIA ET AL.

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

colatitude (degrees)

λ=−0.48891
λ=−0.18856
λ=−0.13881

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

colatitude (degrees)

λ=0.032244
λ=0.057327
λ=0.071965

Figure 3. Eigenfunctions ũθ / sin θ against co-latitude (m = 1, N = 50, α = 0.1 and ε = 1). (a) Fast
Magnetic Rossby waves travelling westwards, the blue solid curve represents the fastest sinuous mode,
the green dashed curve being the fastest varicose mode. The red dotted curve is a slower sinuous mode.
The number of nodes increases when the frequency decreases in magnitude. (b) Slow Magnetic Rossby
waves travelling eastwards. Note that solid blue and dotted redmodes are varicosemodes with one and
three nodes respectively,the green dashed curve is a sinuous mode with two nodes. Slow Rossby waves
increase in frequency as the number of nodes increases.

Slow magnetic Rossby waves plotted in 3(b) have the following sequence: the slowest first
mode shown in solid blue is a varicose mode with one node, the next in dashed green is a
sinuous mode with two nodes and the third (dotted red) varicose mode has three nodes.

5.1. MIGwaves

Solving the eigenvalue problem with a MATLAB code, we found numerically that the
highest frequencies correspond to MIG waves. These waves are essentially (Longuet-
Higgins 1968) class 1 waves, interfacial gravity waves, modified by the magnetic field.
Using (17) for η, we let ε → 0, with λ ∼ O(ε−1/2), the gravity wave scaling. Then
provided α is not too large, α = O(ε−1/2), the η-Equation (17) reduces to the associated
Legendre equation, with solutions η = Pmn ( cos θ) and λ is governed by (19a,b). So in the
ε → 0 limit, provided the magnetic field is not too strong, the solutions for η are spherical
harmonics.

In Figure 4, the top two panels show η for the P12 MIG wave with ε = 1. The P12 mode is
not the slowestm = 1 mode, that is the P11 varicose mode gravity wave, but it is the lowest
frequency sinuous mode and is representative of the behaviour of the general case. At
small ε, even for α as large as 5 the solutions are very similar to Figure 4(a). However, the
two top panels of Figure 4 at ε = 1 show a marked difference between the α = 10−3 and
α = 5 cases. The small magnetic field solution is still essentially a P12 spherical harmonic,
but the stronger magnetic field has caused the mode to concentrate near the equator, so
it is becoming an equatorially trapped mode. At ε = 100, the bottom two panels, we see
in Figure 4(c) that even when the magnetic field is too weak to affect the solution the
wave becomes equatorially trapped. The α = 5, ε = 100 case is completely trapped at
the equator, and required a truncation level of N = 70 to resolve it. It is clear from these
results that as either ε → ∞ or as α → ∞ MIG waves become equatorially trapped. In
Section 6we develop an asymptotic theorywhich sheds light on the behaviour in both these
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Figure 4. Contour plots of the scaled height η with ε 1 and 100. These are numerical solutions for MIG
waves travelling eastward, and the sequence corresponds to the P12 spherical harmonic at small ε and α.
The left column corresponds toα = 10−3 withN = 50 and the right column toα = 5withN = 70.The
bottom right panel shows strong equatorial trapping.

limits. An interesting feature of these solutions is that the amplitude of the η disturbance
becomes small compared to unity as ε increases. This means that most of the energy of
the disturbance is kinetic and magnetic energy at large ε with very little in the form of
potential energy.

In Table 1 (eastward propagating waves) and 2 (westward propagating waves) we set
m = 1 and looked for the solution that corresponds to the P12 solution in the low ε, low
α limit. As ε or α are increased, this mode evolves continuously, giving the results shown
in the two tables. At large ε and small α we know that the table 1 results must agree
asymptotically with the ν = 0 (21) formula, recalling from Section 4 that eastward gravity
waves have the connection formula ν = n−m− 1, and the table 2 results must agree with
the ν = 2 (21) formula, as westward gravity waves connect ν with n−m+1. Since only the
rotation distinguishes between themagnitude of the frequencies of eastward and westward
propagating waves, the differences (apart from the sign) are only significant at large values
of ε. Even then, when α becomes large the waves take the form of Alfvén waves which
have the same form whether travelling eastward or westward. As α is increased, the MIG
waves in both directions merge smoothly into Alfvén waves. These Alfvén wave modes
become increasingly trapped at the equator as α increases. The entries for large α and large
ε are not shown, because these modes are so equatorially trapped they need a very high
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Table 1. Eigenvalues λ for different values of α and ε, N = 50 andm = 1. Numerical solutions for MIG
waves: waves travelling eastward. These are the n = 2 solutions with eigenfunctions as in Figure 4. The
starred entry at ε = 0.1, α = 103 requiredN = 80.

α 10−3 10−2 10−1 1 101 102 103

ε = 0.01 24.419 24.419 24.419 24.434 26.269 117.86 1037.1
ε = 0.1 7.6851 7.6851 7.6856 7.7409 14.357 108.09 1017.2∗
ε = 1 2.4316 2.4316 2.434 2.6913 11.839 103.72 ****
ε = 10 0.8459 0.84601 0.85661 1.5451 10.833 **** ****
ε = 100 0.37963 0.37989 0.40424 1.2342 10.383 **** ****

Table 2. Eigenvalues λ for different values of α and ε, N = 50 andm = 1. Numerical solutions for MIG
waves: waves travelling westward. These are the n = 2 solutions with eigenfunctions as in Figure 4. The
starred entry at ε = 0.1, α = 103 requiredN = 80.

α 10−3 10−2 10−1 1 101 102 103

ε = 0.01 –24.586 –24.586 –24.586 –24.598 –26.227 –117.74 –1037.1
ε = 0.1 –7.8533 –7.8533 –7.8536 –7.8858 –14.102 –108.03 –1017.2∗
ε = 1 –2.6129 –2.6129 –2.6131 –2.6718 –11.719 –103.7 ****
ε = 10 –1.1119 –1.1118 –1.1088 –1.2956 –10.779 **** ****
ε = 100 –0.67845 –0.67845 –0.67891 –1.1118 –10.358 **** ****

truncation N to resolve them. Fortunately, in this limit we have an asymptotic theory (see
Section 6) which gives these missing frequencies to a high level of accuracy.

In Figure 5 we plot the corresponding eigenfunctions for ũθ / sin θ and ũφ/ sin θ for the
eastward and westward propagating modes. The modes shown here are sinuous modes
continued from the solution which at small ε and α had η of the form P12, as in Figure 4.
The values shown are at a particular azimuthal angle φ, chosen so that the value at the
equator of uθ / sin θ is maximal. The behaviour at other longitudes may be inferred from
the simple exp imφ dependence. Recall that the unscaled variable uθ is 90◦ out of phase
with ũθ . These plots also show clearly the equatorial trapping that occurs both for eastward
and westward propagating waves. This equatorial trapping is reminiscent of that found
by Zaqarashvili et al. (2009) who considered an antisymmetric basic state field with zero
toroidal field at the equator. In that case the trapping was associated primarily with the
variation of the magnetic field across the equator rather than the asymptotic nature of the
parameters. The corresponding plots for the westward propagating MIG waves at large
α (not shown) are almost identical to the eastward modes, because the rotation is only
playing a very minor role. At large α it is the magnetic field that is trapping the wave at the
equator.

5.2. Magnetic Rossbywaves and instability

The small ε limit for magnetic Rossby waves is best derived from (16) rather than (17),
Zaqarashvili et al. (2007). Unlike in the MIG wave case, we now take the limit ε → 0 with
λ and α constant. Then Equation (16) reduces to

(1 − μ2)
d2ũθ

dμ2 − 2μ
dũθ

dμ
+
[
− (λ + 2mα2)m

(λ2 − m2α2)
− m2

(1 − μ2)

]
ũθ = 0. (26)
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Figure 5. Northward and azimuthal velocities against co-latitude for different values of ε and α. These
are MIG Waves with N = 50, m = 1 and n = 2, the slowest sinuous mode. (a) is ũθ / sin θ and (b)
is ũφ/ sin θ for the eastward propagating waves. (c) and (d) are similar for the westward propagating
waves. (e) and (f) are for eastward propagating waves at much larger α = 5, showing equatorial
trapping. The westward propagating MIG waves at this value of α look almost identical.

This is again the Legendre differential equation, whose solutions are the associated Legen-
dre polynomials, ũθ = Pmn ( cos θ). The dispersion relation of these waves is

n(n + 1) = − (λ + 2mα2)m
(λ2 − m2α2)

, (27)
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Figure 6. (a) Frequency of the magnetic Rossby waves at ε = 1 as a function of α. The lowest modes are
shown form = 1, 2, 3. The upper branches are the slow magnetic Rossby waves, and the lower branch
the fast magnetic Rossby waves. The twom = 1 branches merge near α = 0.956 and a pair of complex
modes branch off there. The dashed curve is the real part of the frequency of these complex modes. (b)
The m = 1, n = 2 modes are shown for a range of different ε. The real parts of the frequency of the
complex modes are shown as dashed lines.

where n is the latitudinal wave number and the degree of the Legendre polynomial. We
have the following quadratic formula in λ,

n(n + 1)λ2 + mλ + m2α2[2 − n(n + 1)] = 0. (28)

The solutions are

λ = −m ± m
√
1 − 4α2n(n + 1)[2 − n(n + 1)]

2n(n + 1)
(29)

where the positive sign corresponds to slowmagnetic Rossby waves, which travel eastward,
and the negative sign gives the fast magnetic Rossby waves travelling westward. When
α = 0, equation for the fast Rossby modes reduces to λ = −m/n(n + 1) which are
the hydrodynamic Rossby waves, Longuet-Higgins (1968). Note that n = 1 gives a zero
frequency for the slow magnetic Rossby mode, but we see in Section 6.2.3 that at finite
ε there is a very slow westward Rossby mode corresponding to m = n = 1, which we
call the anomalous slow magnetic Rossby wave, as it travels in the opposite direction to
all the other slow magnetic Rossby waves. So for each m there is a family of both slow
and fast magnetic Rossby waves with n increasing from m to ∞. In Figure 6(a) we show
how the frequencies of the magnetic Rossby waves evolve as α increases. Interestingly the
m = 1 fast and slow magnetic Rossby branches merge together and a complex unstable
branch emerges at this point. This means there are unstable growing modes in this model.
Figure 6(a) is for the lowest frequency sinuous mode, but instability occurs for a whole
family of m = 1 modes with increasingly complex θ structure. In Figure 6(b), which is
for m = 1 but has n = 2, the first varicose mode, we show how merging to instability
occurs at all values of ε, though for small rotation (small ε) a very large α is required before
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Figure 7. Domain of instability in the ε − α plane. The instability occurs for parameter values above the
lines.

instability onsets. Even for large ε, it is necessary to have α > 0.5 for instability to occur.
Figure 7 shows the domain of instability as a function of ε and α for them = 1 mode both
for n = 1 and the more stable n = 2 solutions. For small ε the critical α for instability
appears to scale as ε−1/4 in the n = 1 case and ε−1/2 in the n ≥ 2 cases.

This instability can be related to the current driven instabilities of Tayler (1973), Tayler
(1980) and Pitts and Tayler (1985) who determine the conditions under which a toroidal
magnetic field can become unstable to non-axisymmetric disturbances, both in cylindrical
and spherical geometries; see also the extensive discussion in Spruit (1999). For these
current-driven instabilities the instability draws its energy from the imposed current via
the magnetic curvature force. The role of the magnetic field in this case is therefore that
it acts as an energy source (with a strong magnetic field being required for the instability
to proceed). For these current-driven instabilities the role of rotation is simply to mediate
the rate at which energy can be extracted from the mean field. This type of instability
should be distinguished from a different class of instabilities that emerge in the presence
of both differential rotation and current (see e.g. Gilman and Fox 1997, Gilman and
Dikpati (2002), Cally (2003), Cally et al. (2008), Hollerbach and Cally (2009)). These joint
instabilities occur for relatively weak magnetic fields (such as those that may occur in the
stable layers of planets and stars) in differentially rotating layers. For these systems the
axisymmetric differential rotation and magnetic field, which in isolation would be linearly
stable, are together jointly unstable. Here the toroidal magnetic field acts as a conduit to
allow the extraction of energy from the differential rotation – though some energy may
also be extracted from the current.

This new instability can also be compared with previously known m = 1 instabilities
in related geophysical problems. Malkus (1967) found an m = 1 instability using the
same magnetic field as us, B = B0 sin θ êφ . However, in his problem there was no stable
stratification, he considered homogeneous rotating fluid in a full sphere. Interestingly,
he found a criterion for instability equivalent in our notation to α > 0.5. It can be seen
from Figure 7 that in the limit ε → ∞ his criterion reduces to ours. This is consistent
with the fact that the limit ε → ∞ corresponds to the effect of gravity dropping out of
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our problem, which is equivalent to the buoyancy frequency being small compared to the
rotation frequency. Diffusivem = 1 instabilities have also been found in spherical models.
Roberts and Loper (1979) also considered the Malkus field with homogeneous fluid in
cylindrical and spherical containers and found that the m = 1 modes could become
destabilised when Ohmic diffusion is added. Sharif and Jones (2005) considered the fully
two-dimensional problem in a spherical shell, which corresponds to very large buoyancy
frequency, ε → 0. They considered the case with a basic state zonal flow and a magnetic
field, but they found anm = 1 instability in the presence of ohmic diffusion even with zero
zonal flow, but no instability without magnetic diffusion in this case. They had a slightly
more complicated basic statemagnetic field, but their result is consistent with ours, because
with no magnetic diffusion and small ε our critical α for instability goes to infinity.

Figure 6(a) and (b) show some very remarkable features. The westward propagating
magnetic Rossby waves all pass through α = 0.5, λ = −m/2 exactly. The fast magnetic
Rossby waves are westward propagating super-Alfvénic waves at small α, that is the
modulus of their phase speed, |λ/m| > α, so the wave speed exceeds the Alfvén speed.
However, as α increases, they become sub-Alfvénic. Inspection of (16) shows that at
transition between the two regimes to avoid singularity we must have both

λ2 − α2m2 = 0, and λ + 2mα2 = 0 (30a,b)
=⇒ α = 0.5 and λ = −0.5m (30c,d)

so transition can only occur at α = 0.5 whatever the value of ε. So all the fast magnetic
Rossby waves have frequency−m/2 at α = 0.5, whatever ε, so all the curves in Figure 6(b)
pass through this point. An asymptotic analysis near α = 0.5 is given in Section 6.2.2,
showing that near the Alfvénic point the solutions are spherical harmonics.

Another interesting feature of Figure 6(b) is that for the m = 1 eastward propagating
Rossby waves, there is a point where the frequency is zero, i.e. they travel eastwards for
α below a critical value and westward above it. This means there is a linear stationary
solution which is an equilibrium between the Lorentz, Coriolis and Buoyancy forces.

5.3. Fastmagnetic Rossbywaves

Figure 8 shows the westward propagating fast magnetic Rossby waves at various α and
ε. Figure 8(a) and (b) show the mixed Rossby-gravity mode, which is the fastest sinuous
mode, m = n = 1 in the notation of (22), for a small value of α = 0.1. The frequencies
of the plotted modes are given in Table 3. We see that at large ε, the fast magnetic Rossby
mode is equatorially trapped, and an asymptotic analysis is given in Section 6.2.1, but
it becomes delocalised as α → 0.5. In the neighbourhood of α = 0.5, the asymptotic
theory of Section 6.2.2 shows that the solutions are spherical harmonics. This can be seen
in Figure 8(c) and (d), which are for α = 0.49. Even the ε = 100 case shows very little
equatorial trapping, and the frequencies are all very close to λ = −0.5. In Table 4 the
frequencies of the m = 1, n = 2 varicose magnetic Rossby wave are given. This mode is
a full Rossby mode rather than a mixed Rossby-gravity mode; at large ε and small α the
frequency follows the asymptotic behaviour of ν = 1 in (22).

The m = 1 case is exceptional, because of the appearance of unstable modes beyond
α = 0.5, so as α is increased it is replaced by unstable modes. It is still possible to trace
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Figure 8. Northward and azimuthal velocities against co-latitude for different values of ε and α. These
are westward fast magnetic Rossby waves. (a–d) are forN = 50,m = 1 and n = 1, the fastest sinuous
mode, which is the mixed Rossby-gravity mode. (a) is ũθ / sin θ and (b) is ũφ/ sin θ with α = 0.1. The
larger ε values show equatorial trapping. (c) and (d) are at α = 0.49 close to the Alfvénic transition
point. (e) and (f) arem = 2 n = 2 modes for α = 10, into the polar trapping regime. The eastward slow
magnetic Rossby waves have very similar at this large value of α.

the higher m modes which are still wave-like, but at large α the unstable modes may well
change the basic state significantly. However, in Figure 8(e) and (f) we show m = 2,
n = 2 varicose modes at large α. The frequencies of these modes can be found in Table 5.
We see that the frequencies increase with α, and the modes become trapped at the poles.
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Figure 9. Contour plots of the scaled height η for fast magnetic Rossby waves. These illustrate the polar
trapping of the Rossby waves at large α. The fastest sinuous mode is shown for (a)m = 2, (b)m = 3.

Table 3. Eigenvalues λ for the fast magnetic Rossby wave for different values of α and ε and with
m = n = 1. This is the fastest sinuous mode, the mixed Rossby-gravity mode: waves travelling
westward. The modes become complex (unstable) at larger values of α.

α 10−3 10−2 10−1 1 101 102 103

ε = 0.01 –0.4999 –0.4999 –0.4999 –0.4989 –0.301 – 3.19i –0.482 – 92.67i –0.498 – 992.90i
ε = 0.1 –0.4988 –0.4988 –0.4989 –0.4883 –0.442 –7.48i –0.494 – 97.73i –0.499 – 997.76i
ε = 1 –0.4880 –0.4880 –0.4889 –0.294 – 0.12i –0.482 – 9.25i –0.498 – 99.29i –0.500 – 999.29i
ε = 10 –0.4140 –0.4141 –0.4202 –0.435 – 0.60i –0.494 – 9.76i –0.499 – 99.77i –0.500 – 999.75i
ε = 100 –0.2710 –0.2711 –0.2877 –0.480 – 0.79i –0.498 – 9.92i –0.500 – 99.91i –0.500 – 999.81i

Table 4. Eigenvalues λ for the fast magnetic Rossby waves for different values of α and ε, and with
m = 1, n = 2. Second lowest (varicose) mode: waves travelling westward.

α 10−3 10−2 10−1 1 101 102 103

ε = 0.01 − − 0.1665 –0.1669 –0.1999 –0.9034 –5.297 –0.482–92.67i –0.498–992.90i
ε = 0.1 − − 0.1652 –0.1656 –0.1987 –0.8971 –0.443– 7.47i –0.494 –97.74i –0.499–997.76i
ε = 1 − − 0.1530 –0.1534 –0.1886 –0.8086 –0.482–9.25i –0.498–99.29i –0.500 – 999.29i
ε = 10 − − 0.0950 –0.0956 –0.1408 –0.437–0.60i –0.494–9.76i –0.499 – 99.77i –0.500 – 999.75i
ε = 100 − − 0.033 –0.0346 –0.1054 –0.480 – 0.79i –0.498 – 9.92i –0.500 – 99.91i –0.500 – 999.81i
ε = 1000 − − 0.0106 –0.0145 –0.1006 –0.494 – 0.84i –0.499–9.97i –0.500 – 99.93i –0.500 – 999.82i

Table 5. Eigenvalues for the fast magnetic Rossby waves for different values of α and ε, n = 2 and
m = 2: waves travelling westward.

α 10−3 10−2 10−1 1 101 102 103

ε = 0.01 −0.3333 −0.3341 −0.4000 −1.8080 −15.9209 −63.655 −200.50
ε = 0.1 −0.3323 −0.3338 −0.3997 −1.8066 −11.5124 −36.058 −112.97
ε = 1 −0.3299 −0.3307 −0.3971 −1.7906 −6.81047 −20.504 ****
ε = 10 −0.3056 −0.3065 −0.3771 −1.5864 −4.0822 −11.757 ****
ε = 100 −0.2300 −0.2312 −0.3189 −1.2615 −2.5584 **** ****

An asymptotic theory is possible, see Section 6.2.4. Polar trapping occurs for modes with
m ≥ 2 as αε1/2 → ∞ provided the waves are sub-Alfvénic. This means that the fast
westward waves are polar trapped for any α > 0.5 if ε is sufficiently large. In Figure 9 we
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Table 6. Eigenvalues for different values of α and ε, withm = 1, and n = 1, the anomalous westward
slowmagnetic Rossby mode.

α 10−2 10−1 1 101 102 103

ε = 0.01 **** −2.000 × 10−7 −2.005 × 10−3 −0.301 + 3.19i −0.482 + 92.67i −0.498 + 992.90i
ε = 0.1 **** −2.000 × 10−6 −0.02053 −0.442 + 7.48i −0.494 + 97.73 −0.499 + 997.76i
ε = 1 **** −2.000 × 10−5 −0.294 + 0.12i −0.482 + 9.25i −0.498 + 99.29i −0.500 + 999.29i
ε = 10 −2.000 × 10−8 −0.000197 −0.435 + 0.60i −0.494 + 9.76i −0.499 + 99.77i −0.500 + 999.75i
ε = 100 −2.000 × 10−7 −0.00172 −0.480 + 0.79i −0.498 + 9.92i −0.500 + 99.91i −0.500 + 999.81i

Table 7. Eigenvalues for different values of α and ε, with n = 2, and m = 1. Slow magnetic Rossby
modes: waves travelling eastward.

α 10−3 10−2 10−1 1 101 102 103

ε = 0.01 4 × 10−6 0.000399 0.033322 0.73319 4.7293 -0.482+92.67i -0.498+992.90i
ε = 0.1 4 × 10−6 0.000399 0.033222 0.69392 -0.443+7.47i -0.494+97.74i -0.499+997.76i
ε = 1 4 × 10−6 0.000399 0.032244 0.28655 -0.482 + 9.25i -0.498 + 99.29i -0.500 + 999.29i
ε = 10 4 × 10−6 0.000397 0.024642 -0.437+ 0.60i -0.494 + 9.76i -0.499 + 99.77i -0.500 + 999.75i
ε = 100 4 × 10−6 0.00038 0.004171 -0.4940 + 0.84i -0.499 + 9.97i -0.500 + 99.93i -0.500+ 999.82i

Table 8. Eigenvalues for different values of α and ε, withm = 2, and n = 2, an eastward slowmagnetic
Rossby mode. Modes all real in thism = 2 case.

α 10−3 10−2 10−1 1 101 102 103

ε = 0.01 7.9998 × 10−6 0.0007981 0.06667 1.4738 15.480 62.705 199.50
ε = 0.1 7.9998 × 10−6 0.0007981 0.06664 1.4649 10.677 35.073 111.97
ε = 1 7.9998 × 10−6 0.0007980 0.06641 1.3557 5.8606 19.508 ****
ε = 10 7.9998 × 10−6 0.0007976 0.06407 0.7645 3.0980 10.759 ****
ε = 100 7.9994 × 10−6 0.0007936 0.04446 0.3153 1.5634 **** ****

show the scaled surface displacement η for two polar trapped modes, m = 2 and m = 3,
illustrating the nature of these modes.

5.4. Slowmagnetic Rossbywaves

At small α, the smallest frequencies correspond to slow magnetic Rossby waves generally
propagating eastward. The only exception is the anomalous m = n = 1 mode, which
travels westward as seen in Table 6, and for which the eigenfunctions are shown in Figure
10(a) and (b). Note that b̃θ / sin θ and b̃φ/ sin θ are shown, because the energy of a slow
magnetic Rossby mode is mainly magnetic, rather than kinetic or potential energy. Note
that in Table 6 at larger α all the modes are complex, corresponding to instability.

The frequencies of the slow magnetic Rossby waves (except at m = n = 1) can all be
approximated at small ε and α by (29) with the plus sign. The anomalousm = n = 1mode
gives λ = 0 in this approximation; the asymptotics of this anomalous mode are given in
Appendix A. In Table 7 the eigenvalues for the eastward propagating m = 1, n = 2 slow
magnetic Rossby wave are given. The eigenfunctions for this varicose mode are shown for
α = 0.1 in Figure 10(c) and (d). The mode m = 1, n = 2 also becomes unstable at larger
α. Although in table 7 we see eastward propagation for low α for this mode, we know
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Figure 10.Meridional and azimuthal magnetic fields for slowmagnetic Rossby waves. (a) and (b) are for
α = 0.1,m = 1 and is the anomalous westward propagating slow sinuous mode. (c) and (d) are for the
eastward propagating n = 2,m = 1 varicose mode.

from Figure 6(b) that the mode becomes westward shortly before it goes unstable, and the
frequency of the unstable modes is not far from −0.5. The asymptotics of this mode at
large α is given in Section 6.2.4.

The m = 2 mode never becomes unstable even at large α, see Table 8. At large α the
mode become trapped at the poles, and behaves very similarly to the fast magnetic Rossby
mode shown in Figure 9, though it travels eastward rather than westward. The asymptotics
at large α for m ≥ 3 are also given in Section 6.2.4. They are always sub-Alfvénic. The
m = 2 mode is again somewhat anomalous, and is dealt with in Appendix B.

5.5. Unstable Rossbywaves

The eigenfunctions associated with the unstablem = 1 modes are shown in Figure 10. At
moderate ε and α they form the usual sequence of alternating sinuous and varicose modes,
filling the whole spherical surface, but these unstable modes also become polar trapped
at large α or ε, and can be analysed asymptotically in these limits, see Section 6.2.4 (see
Figures 11 and 12).
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Figure 11. Eigenfunctions for unstable modes.m = 1. (a) shows the real part of ũθ / sin θ and (b) shows
its imaginary part. Note the co-latitude goes from north to south pole. (c) and (d) are the real and
imaginary parts of ũφ/ sin θ . The blue solid curve at α = 0.96 has ε = 1 and the red dotted curve at
α = 0.638 has ε = 10. Both these cases are close to marginal stability. The green dashed and magenta
dash-dot curves are for α = 10, ε = 1 and ε = 10 respectively and are strongly supercritical polar
trapped modes.

5.6. Kelvin waves

For the non-magnetic case, Longuet-Higgins found just one eastward propagating wave
corresponding to the Kelvin mode, and he established that at small ε, the Kelvin mode
corresponds to the first eastward propagating gravity wave, (n − m = 0), with dispersion
relation (19a,b). When ε is large, the waves are equatorially trapped and the dispersion
relation becomes (23). He also noted that when ε is large the northward velocity ũθ is
much smaller than the azimuthal velocity.

When a toroidal magnetic field is introduced into the system, Kelvin waves become
trapped at the equator for both large α and large ε, as can be seen in Figures 13) and (14).
From the numerical results, we note that on increasing ε or α the northward velocity goes
to zero quickly, which is a useful property of this magneto-Kelvin mode. The original set
of equations, when ũθ = 0, reduces to

(λ + 2mα2)μũφ + λ(1 − μ2)
∂η

∂μ
= 0, (31a)
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Figure 12. Contour plots of the scaled height η for unstable waves. The mode on the left (a) is close to
the onset of instability, on the right (b) the mode is strongly unstable and trapped at the poles. Note
that the contours of zero η are no longer lines of longitude, but slope on the θ -φ surface.
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Figure 13. Numerical solution for different values of α for the Magneto Kelvin Mode with m = 1,
ε = 100 andN = 50. (a) Northward velocity, (b) Azimuthal velocity.

(λ2 − m2α2)ũφ − λmη = 0, (31b)
λε(1 − μ2)η − mũφ = 0. (31c)

Eliminating η between (31a) and (31b) gives

(1 − μ2)
dũφ

dμ
+ m(λ + 2mα2)

(λ2 − m2α2)
μũφ = 0, (32)

with solution
ũφ = C1

(
1 − μ2)q/2, q = m(λ + 2mα2)

(λ2 − m2α2)
, (33a,b)

where C1 is a constant associated with the normalisation. When the waves are equatorially
trapped, q is large and the solution is close to zero except when μ is small, so using (33a,b)
and (31b),
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Figure 14. Numerical solution for the scaled height η increasing α = 0.001 in (a) and α = 1 in (b), for
Magneto Kelvin mode withm = 1, ε = 100 andN = 50.

ũφ ∼ C1
(
1 − 1

2qμ
2), η ∼ C1

(λ2 − m2α2)

λm
(
1 − 1

2qμ
2). (34a,b)

Substituting these expressions for η and ũφ into Equation (31c), and taking the limit,
1 − μ2 ∼ 1 appropriate for equatorially trapped waves, leads to the dispersion relation

λ2 − m2α2 = m2

ε
giving λ = ±m

√
1
ε

+ α2. (35a,b)

Note that if α = 0, the dispersion relation coincides with Longuet-Higgins formula
for equatorially trapped Kelvin waves. An interesting issue is whether both signs in the
dispersion relation give meaningful solutions. When α is small, the negative sign gives
q < 0 in (33a,b), which does not correspond to an equatorially trapped mode. Longuet-
Higgins therefore found only eastward propagating Kelvin waves. In the magnetic case,
the situation is different, because provided

α >
1
2

(
1
2

+
√
1
4

+ 4
ε

)1/2

(36)

the negative root gives positive q. Of course, α must exceed this inequality by somemargin,
as we require q large, not just positive, for trapped waves, but nevertheless this shows that
westward propagating Kelvin waves can be found at large α, which is not possible in the
nonmagnetic case.

The frequencies for some eastward propagating magneto-Kelvin waves are shown in
Table 9. For small α the results are consistent with the Longuet-Higgins nonmagnetic
formulae, while for large α the results are in good agreement with (35a,b). The starred
entries are when the equatorially trapping is so strong our numerical program could not
accurately resolve the solution. As usual, these are precisely the cases where the asymptotic
formula (35a,b) becomes very accurate.

In Table 10, some westward propagating magneto-Kelvin waves are shown. Naturally,
there are no such waves for small α, and for small ε even the α = 1 case gives no westward
magneto-Kelvin wave. Again, at large α there are resolution problems, but for moderately
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Table 9. Numerical results for eigenvalues λ that correspond to the Kelvin mode for m = 1. Waves
travelling eastward.

α 10−3 10−2 10−1 1 101 102 103

ε = 0.01 13.9 13.9 13.9 13.9012 15.2263 100.5000 ****
ε = 0.1 4.2452 4.2452 4.2453 4.2649 10.4999 100.0500 ****
ε = 1 1.2307 1.2307 1.2323 1.4782 10.0050 **** ****
ε = 10 0.34457 0.34468 0.35618 1.0496 10.0050 **** ****
ε = 100 0.10263 0.10309 0.14257 1.005 **** **** ****

Table 10. Numerical results for eigenvalues λ that correspond to the Kelvin mode for m = 1. Waves
travelling westward.

α 1 101 102

ε = 0.01 **** –15.3966** –100.5000
ε = 0.1 **** –10.5013 ****
ε = 1 –1.6888** –10.050 ****
ε = 10 –1.0516 –10.0050 ****
ε = 100 –1.0050 **** ****

large α we have good agreement with the predictions of (35a,b) with the negative sign. The
starred entries at α = ε = 1 and α = 10, ε = 0.01 are on the westward propagating Kelvin
branch, but because q is not very large at these values, they are not strongly trapped at the
equator, so the asymptotic theory does not give accurate frequencies for these two points.

6. Asymptotic theory at large ε or large α

An attractive feature of this problem is that many of the key results can be derived using
asymptotic theory, which give simple formulae for the eigenvalues in many cases. Here we
describe these asymptotic theories. Numerical comparisons between the asymptotics and
the numerical results, many of which are remarkably close, are given in Appendix C.

6.1. MIGwaves

The asymptotics at large ε and α are best dealt with starting from Equation (16). Magneto-
inertial gravity waves are trapped near the equator when ε is large even if α is small
(Longuet-Higgins 1968), and from Figures 4 and 5 we see that even at moderate ε

MIG waves become trapped as α get large. Also, the fast magnetic Rossby wave can be
equatorially trapped at small α and large ε, but for these large ε waves equatorial trapping
is lost as α → 0.5. The slow magnetic Rossby wave is not equatorially trapped. We first
treat the equatorially trapped MIG waves,

6.1.1. Equatorially trappedMIGwaves
As α increases, the frequency λ increases and for these fast waves λ2 > m2α2. For waves
which are non-zero only near the equator, we can take μ = cos θ to be small. Since μ

is small, and either ε or α is large the factor [ε(λ2 − α2m2)(1 − μ2) − m2] tends to
∼ ε(λ2 − α2m2), and the first derivative term in (16) is negligible.



GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS 29

Then Equation (16) becomes

d2ũθ

dμ2 +
[
(λ2 − α2m2)ε − m(λ + 2mα2)

(λ2 − α2m2)

]
ũθ − ε(λ + 2mα2)2

(λ2 − α2m2)
μ2ũθ = 0. (37)

We rescale μ = sμ̂ where the scale factor

s = 1√
2

[
(λ2 − α2m2)

ε(λ + 2α2m)2

]1/4
μ̂, (38)

and the rescaled equation becomes

d2ũθ

dμ̂2 + 1
2

[
(λ2 − α2m2)

ε(λ + 2α2m)2

]1/2[
(λ2 − α2m2)ε − m(λ + 2mα2)

(λ2 − α2m2)

]
ũθ − 1

4
μ̂2ũθ = 0. (39)

This equation is a parabolic cylinder equation, which has solutions which decay as μ̂ →
±∞ provided

1
2

[
(λ2 − α2m2)

ε(λ + 2α2m)2

]1/2[
(λ2 − α2m2)ε − m(λ + 2mα2)

(λ2 − α2m2)

]
= ν + 1

2
, (40)

where ν = 0, 1, 2, . . . is a non-negative integer. The regular solution ũθ for this differential
equation is given byDν(μ̂), the parabolic cylinder function (Abramowitz and Stegun 1965).
The lowest order solutions are, for ν = 0, 1, 2 : ũθ = exp[−(1/4)μ̂2] (sinuous mode),
ũθ = μ̂ exp[−(1/4)μ̂2] (varicose mode) and ũθ = (μ̂2 − 1) exp[−(1/4)μ̂2] respectively.
Equation (40) can be squared and written as an 8th order polynomial in λ, which can
be solved using standard numerical polynomial solvers. However, some care is needed
because not every root of the 8th order equation corresponds to an acceptable solution of
(39).

For Equation (39) to be a valid approximation, it is clearly necessary that the scale
factor s be small. In the limit α → 0 we know that at large ε the gravity waves have
λ ∼ ±(2ν + 1)1//2ε−1/4, so s is indeed small. Also, we note that at ε ∼ O(1), s becomes
small at large α.

We now look at the asymptotic behaviour of (40) first in the limit ε → ∞ with α small.
We recover the (Longuet-Higgins, 1968) result, that

λ = ± (2ν + 1)1/2

ε1/4
+ m

ε1/2(4ν + 2)
, (41)

the plus sign being for the eastward propagating MIG waves and the minus sign for the
westward propagating waves. Note that from (24) the n = 2 eastward mode connects with
ν = 0, so ν = 0 in (41) to get approximations to the table 1 results, while from (24) the
n = 2 westward mode connects with ν = 2, so in (41) we need ν = 2 as well as the minus
sign to get agreement with table 2 in this limit. Note also that because this expansion is in
powers of ε1/4, these approximations are not very accurate unless ε is very large.

We now consider the limit of (40) in which ε remains of order unity as α → ∞. From
the results in Tables 1 and 2 we see that |λ| exceedsmα in this limit but only by a relatively
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small amount at large α. We therefore let λ = δ + mα and expand in powers of the small
parameters δ/λ and 1/α, to obtain the dispersion relation at large α and ε ∼ O(1)

λ =±
[
mα + (2ν + 1)2/3

(
α

2mε

)1/3
+ (2m)1/3

(2ν + 1)2/3α1/3ε2/3

(
1
3

− (2ν + 1)2

4m2

)]

+ (2ν + 1)2/3

3(2mεα2)1/3
, (42)

which is accurate to O(α−2/3), terms of order α−1 and smaller being omitted. Here the
plus sign refers to waves propagating eastwards, the minus sign to waves propagating
westwards. In Appendix C we see that (42) gives accurate estimates of λ at large α.

6.2. Fast and slowmagnetic Rossbywaves

We now consider the asymptotics of the fast and slowmagnetic Rossby waves. We start by
considering small α and monitor developments as α gradually increases. At small ε, the
fast magnetic Rossby waves are simply spherical harmonics, but at large ε the fast magnetic
Rossby waves are equatorially trapped (Longuet-Higgins 1968), and so the same theory
based on (39) can be applied, and asymptotic approximations obtained from (40).

6.2.1. Equatorially trapped fast magnetic Rossby waves
Equatorially trapped fast westward magnetic Rossby waves are found when ε is large and
α < 0.5. Since ε is large, the analysis of (37)–(40) is valid here, but now on the left-hand
side of (40)

(λ2 − α2m2)ε 
 −m(λ + 2mα2)

(λ2 − α2m2)
. (43)

Note that as the waves are westward and super-Alfvénic (λ < −mα) for α < 0.5, the factor
λ+2mα2 is negative, while λ2−α2m2 > 0. The dispersion relation (40) therefore becomes

λ2 = α2m2+ m2

(2ν + 1)2ε
, so λ = −mα

(
1 + 1

(2ν + 1)2εα2

)1/2
. (44)

It can now be verified that at large ε (43) holds in the range 0 < α < 0.5 provided α is
not too close to 0.5. In the limit α → 0 this dispersion relation reduces to the Longuet-
Higgins result (22), as expected. Recall that the integer ν ≥ 1 for a valid solution. When
0.5 > α  ε−1/2, a binomial expansion is valid, and

λ ∼ −mα − m
2εα(2ν + 1)2

, (45)

which gives good agreement with the numerical results at large ε and α in this range. The
factor λ + 2mα2 ∼ −2mα(0.5 − α), so it is clear that as α → 0.5 the magnetic Rossby
waves, unlike the MIG waves, become delocalised, no longer trapped at the equator. The
fast magnetic Rossby waves are westward propagating super-Alfvénic waves at small α,
that is the modulus of their phase speed, |λ/m| > α, so the wave speed exceeds the Alfvén
speed. However, as α increases, they become sub-Alfvénic. From (30a,b) we know that
the transition can only occur at α = 0.5 whatever the value of ε. So all the fast magnetic
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Rossby waves have frequency −m/2 at α = 0.5. We now detail the asymptotic analysis in
the neighbourhood of α = 0.5.

6.2.2. Fast magnetic Rossby waves near α = 0.5
Let α = 0.5 + α̂, λ = −m/2 + δ where α̂ is small and δ ∼ O(α̂) and insert into (16),
noting that ε(λ2 − α2m2)(1 − μ2) 
 m2, the ODE becomes

(1 − μ2)
d2ũθ

dμ2 − 2μ
dũθ

dμ
+
[
δ + 2mα̂

δ + mα̂
− m2

1 − μ2

]
ũθ = 0, (46)

which is just the associated Legendre equation, so the solutions are spherical harmonics of
degree n, where

n(n + 1) = δ + 2mα̂

δ + mα̂
=⇒ δ = mα̂

[2 − n(n + 1)]
n(n + 1) − 1

(47a,b)

giving a simple formula for the frequency which agrees excellently with our numerical
solutions of the full Equation (16). This solution is valid for all ε and m �= 0, showing
that at large ε the fast magnetic Rossby waves delocalise from their equatorially trapped
state at α ≈ 0.5, the opposite behaviour from the MIG waves, which concentrate further
at the equator as α increases. Once the fast magnetic Rossby waves have become sub-
Alfvénic another asymptotic regime develops as α increases beyond 0.5, and the waves
become trapped at the poles. However, before developing this theory we consider the slow
magnetic Rossby waves.

6.2.3. Slowmagnetic Rossby waves at small α
These waves have a frequency which goes to zero as α → 0 and so do not appear in
the non-magnetic theory. The normal behaviour of these modes is that λ ∼ O(α2) as
α → 0 and we again have that in (16) ε(λ2 − α2m2)(1 − μ2) 
 m2 leading to a great
simplification. Noting that now λ2 
 m2α2, and writing λ = λ̂α2 equation becomes

(1 − μ2)
d2ũθ

dμ2 − 2μ
dũθ

dμ
+
[
2 + λ̂

m
− m2

1 − μ2

]
ũθ = 0, (48)

which is again the associated Legendre equation, but this time with

λ̂ = m
[
n(n + 1) − 2

]
, for positive integer n, (49)

fromwhichwe deduce that slowmagnetic Rossbywaves travel eastwards at smallα. Clearly
the case n = 1, which impliesm = 1, is exceptional, and in Appendix A we show that this
mode has the very slow frequency λ = −εα4/5 at small α. Remarkably, this is the only
westward propagating slow magnetic Rossby wave that occurs at small α. We also note
that since the frequency vanishes at small ε, it was not picked up in the small ε analysis of
Zaqarashvili et al. (2007).

We now consider what happens to slow magnetic Rossby modes as α increases, and
the behaviour of fast magnetic Rossby waves beyond α = 0.5 where they become sub-
Alfvénic. All the Rossby modes remain sub-Alfvénic as α increases beyond 0.5. As we
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saw in Section 5, the m = 1 slow and fast magnetic Rossby waves collide at a particular
value of α and beyond this value there are unstable complex modes. For m ≥ 2 the
slow and fast magnetic Rossby waves remain distinct, and correspond to purely wavelike
solutions. An asymptotic theory at large α is possible, as the waves become trapped at
the poles. Interestingly, this theory can be developed for the m = 1 unstable modes
as well as the wave like solutions. The case m = 2 is exceptional, and is dealt with in
Appendix B.

6.2.4. Magnetic Rossby waves at large α

We start with the m = 1 case, because this establishes the existence of unstable modes in
this problem independently of any numerical analysis. We seek solutions that are trapped
at the pole, and since the behaviour is essentially identical at both poles we focus onμ = 1,
the north pole.We assumeα is large and ε is order unity. A double limit analysis is possible,
but for simplicity we keep to ε ∼ O(1). The numerics suggested that the eigenvalues have
the form

λ = − 1
2 + i(α − κ), (50)

where κ is a constant of order unity to be determined. This is the growing mode; the
decaying mode λ = − 1

2 − i(α − κ) behaves very similarly and can be treated in the same
way. There are two relevant scalings of (16), the first being

(i) μ = 1 − γ1μ̂

α
, (51)

where γ1 is a constant of order unity, to be determined later. μ̂ is an order one vari-
able, and we seek solutions with ũθ → 0 as μ̂ → ∞. Because α is large these corre-
spond to solutions with significant amplitude only near the pole. We now insert (50)
and (51) into (16) and retain only the terms of order α, which give the leading or-
der equation. At first sight it appears that the terms with factors ε(λ2 − α2m2) and
−εμ2(λ + 2mα2)2/(λ2 − α2m2) are of order α2; however, because μ is close to 1, these
order α2 terms cancel out. The condition for this to happen in the sub-Alfvénic case is
that

λ2 − α2m2 = −(λ + 2mα2) =⇒ λ = − 1
2 ±

√
1
4 + α2m(m − 2) (52a,b)

which, if m = 1, gives λ ≈ ±iα as expected, see (50), but gives only real solutions for all
other m. This type of growing mode solution can only exist if m = 1. Taking account of
this cancellation of the O(α2) terms, and making the convenient choice γ1 = (8ε)−1/2,
(16) reduces to Whittaker’s equation

d2ũθ

dμ̂2 +
[
−1
4

+
√

ε

2
κ

μ̂
+ 1

4μ̂2

]
ũθ = 0, (53)

Abramowitz and Stegun (1965). Provided that

κ = (
n + 1

2
)√

2/ε (54a)
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for some non-negative integer n, (53) has solution

ũθ = e−μ̂/2μ̂1/2Ln(μ̂), (54b)

which decays as μ̂ → ∞, and has ũθ → μ̂1/2 as μ̂ → 0. Ln(μ̂) are the Laguerre
polynomials of degree n, so L0 = 1 and L1 = 1 − x. The predicted values of κ agree
well with the numerical solution, indicating that (54a) is the desired solution with eigen-
value

λ = − 1
2 + i

[
(α − (n + 1

2 )
√
2/ε

]
. (55)

However, this is not quite conclusive, as in the course of this asymptotic analysis the
term ε(λ2 − α2m2)(1− μ2) has been assumed of order α, which led to the first derivative
term being considered asymptotically negligible. However, this quantity tends to zero as
μ̂ → 0, so the neglect of this term cannot be justified over the whole domain of interest.
We therefore consider a second scaling

(ii) μ = 1 − γ2μ̃

α2 , (56)

which removes this singularity as now ε(λ2 −α2m2)(1−μ2) has the same order as them2

term. Making the convenient choice γ2 = (1/4)ε, we obtain

μ̃
d2ũθ

dμ̃2 + 1
1 + μ̃

dũθ

dμ
− ũθ

4μ̃
+ 2εγ2ũθ

1 + μ̃
= 0. (57)

Remarkably, this unpromising looking Equation 57 has the simple exact general solution

ũθ = C1μ̃
1/2 + C2

μ̃ ln μ̃ − 1
μ̃1/2 . (58)

To obtain a solution that decays as μ̃ → 0 we must choose C2 = 0. The solution μ̃1/2 is
then valid right through this transition region of thickness O(1/α2) and matches correctly
as μ̃ → ∞ onto the Whittaker equation solution as μ̂ → 0, showing that the leading
order asymptotic expansions match correctly.

The stable case for m ≥ 3 behaves similarly, though m = 2 is stable but somewhat
exceptional (see Appendix B). We now have

λ = α
√
m(m − 2) + κ+ (59)

as the leading order approximation for the eastward propagating mode. The analysis is
very similar to the unstablem = 1 case above, the Whittaker equation now being

d2ũθ

dμ̂2 +
[
−1
4

+
√

ε(m − 2)
8

(2κ+ + 1)
μ̂

+
(
m
2

− m2

4

)
1
μ̂2

]
ũθ = 0. (60)

Provided that

κ+ = −1
2

+
(
n + m

2

)√ 2
ε(m − 2)

, (61a)
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for some non-negative integer n, (60) has the solution

ũθ = e−μ̂/2μ̂m/2L(m−1)
n (μ̂); (61b)

the lowest mode being n = 0. The generalised Laguerre polynomials L(s)
n (μ̂) are related to

the usual Laguerre polynomials (Abramowitz and Stegun, 1965) by

L(s)
n (μ̂) = ( − 1)s

ds

dμ̂s Ln+s(μ̂). (62)

These solutions decay as μ̂ → ∞, and have ũθ → μ̂m/2 as μ̂ → 0. For the westward
propagating fast magnetic Rossby wave, we write

λ = −α
√
m(m − 2) − κ− (63)

and theWhittaker equation is the same except the factor (2κ+ +1) is replaced by (2κ− −1)
so the condition for κ− is

κ− = +1
2

+
(
n + m

2

)√ 2
ε(m − 2)

, (64)

so the magnitude of the frequency of the ‘fast’ westward propagating Rossby wave is one
greater than that of the ‘slow’ eastward propagating Rossby wave, though at large α the
form of the waves becomes very similar.

We have here considered ε to be of order unity, but actually the parameter that needs to
be large for polar trapping is α

√
ε. To get to the polar trapped limit for the Rossby waves,

they must be sub-Alfvénic, so for the westward wave we must have α > 0.5, but provided
this holds, the wave becomes trapped at the poles for large ε as well as for large α. For the
eastward slow Rossby wave, the mode can be trapped at the pole even for small α provided
ε is large enough.

7. Summary and conclusions

Using numerical and asymptotic methods a fairly complete picture of the waves and
instabilities in this MHD shallow water model has been obtained, extending the work
of Longuet-Higgins (1968). These results are specific to the case where the basic state
magnetic field is azimuthal and has the simple sin θ form, and variations in the basic state
height profile are ignored. This casemay not be a realistic representation of the complicated
scenario in planets and stars, where the magnetic fields have a complicated morphology
and zonal flows, thermal wind shears may be important and isosurfaces of pressure may
not be spherical. However it does provide a platform from which to explore more realistic
field configurations.

The waves can be divided into MIG waves, Kelvin waves, fast magnetic Rossby waves
and slow magnetic Rossby waves. With no magnetic field, the fast MIG waves are inertial-
gravitywaveswhich become equatorially trapped in the rapid rotation limit of large ε.With
magnetic field, theMIGwaves become equatorially trapped asα increases even atmoderate
ε. These waves, which can travel eastward or westward, are always super-Alfvénic, that is
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their phase speed exceeds the Alfvén speed. However, at large α the phase speed is close
to the Alfvén speed so these waves turn into equatorially trapped Alfvén waves when the
field becomes strong.

The Rossby waves found in the non-magnetic case turn into westward fast magnetic
Rossby waves in theMHD case. They are initially super-Alfvénic, but become sub-Alfvénic
at α = 0.5 and remain sub-Alfvénic at higher α. At large α they become trapped at the
poles, and can be asymptotically described using the Whittaker equation, similar to the
behaviour in the radial field model of Heng and Spitkovsky (2009). The slow magnetic
Rossby waves are an entirely distinct branch, with no counterpart in the non-magnetic
problem. Mostly they propagate eastward at small α, but there is one anomalous very slow
m = 1 mode which travels westward. As α is increased, the otherm = 1 waves go through
a zero frequency and then travel westward, ultimately colliding with the fast magnetic
Rossby wave to give complex unstable waves. For m ≥ 2 the slow magnetic Rossby waves
continue going eastward as α increases and become trapped at the pole. These waves are
also governed by a Whittaker equation in the large α limit.

The eastward propagating Kelvin wave in the non-magnetic case continues to travel
eastward as α is increased, becoming more equatorially trapped. These waves keep their
‘Kelvin’ character in that the fluid motion is mainly east–west with very little latitudinal
flow.Thenew feature introducedbymagnetic field is that at sufficiently strongα awestward
Kelvin mode, with very little latitudinal motion, comes into existence.

In planetary applications the results on wave propagation are of interest: for example
in the adiabatically stratified outer core of the Earth slow magnetic Rossby waves travel
westward, but in the stably stratified layer they travel eastward, apart from the anomalous
m = 1 mode. This change in the direction of propagation could therefore potentially
be used to determine the location of any wave modes that might be detectable in the
geomagnetic field. We note that signals in the secular variation of the geomagnetic field
have recently been interpreted as magnetic Rossby waves propagating in a stable layer just
below the CMB, Chulliat et al. (2015). We stress again that, before applying this work to
geomagnetic problems, it would be helpful to repeat the analysis for a more realistic basic
state magnetic field, but the present work gives clues to the likely outcome of such studies.

For sufficiently large magnetic field (α > 0.5), we found that the m = 1 slow and fast
magnetic Rossby wave branches coalesce when the magnetic field is sufficiently strong,
leading to the onset of unstable growing modes. This is a current driven instability of the
type previously studied by Tayler (1973, 1980) and Pitts and Tayler (1985) in the astro-
physical context andMalkus (1967) and others in the geophysical context. Interestingly, as
the field strength is increased, the unstable eigenfunctions become trapped at the poles and
are well described by an asymptotic model. We stress here that it is likely that in stars and
planets the presence of differential rotation may lead to the presence of joint instabilities
of the type introduced by Gilman and Fox (1997) for field strengths that are significantly
lower than those required for current driven instabilities. Moreover the simple nature of
the basic state means that as the magnetic field is increased the nature of the assumptions
included in the force balance will play a more important role in determining the stability
of the field (as noted by Pitts and Tayler (1985)). We are currently investigating this.

There are a number of ways in which the study of waves in spherical shallow water
MHDcould be extended.More realistic azimuthal fields could be considered, andmagnetic
diffusion could be added, which would be relevant to the Earth’s core. It would also be of
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interest to explore the effects of a radial field. There is a difficulty here to be overcome,
which is that if there is radial field at the interface, magnetic energy can be carried out
of the layer. The Gilman azimuthal field model avoids this difficulty because the interface
remains a field line.

We conclude by issuing a note of caution for the direct application of our results to stars
and planets. Here we echo the sentiments of Pitts and Tayler (1985) who state ‘...because
we have been discussing model problems and because in several cases we have only been
able to provide a very approximate discussion, the results which we have obtained are
suggestive rather than rigorous’. Clearly the direct application of such results to a star or
planet must take into account the assumptions that have gone into formulating the model.
The model presented here is convenient, as it allows the analytic derivation of many
results in a number of asymptotic limits. We are currently investigating the robustness of
these results to changes in the nature of the model, such as varying the ingredients in the
latitudinal force balance.
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Appendix A. The anomalous slowmagnetic Rossbymode n = m = 1
In Section 5.2 we showed that in the limit α → 0 the slow magnetic Rossby waves have frequency
given by

λ = mα2(n(n + 1) − 2
)
, (A.1)

for integer n andmwith n ≥ m, see (29), where ũθ = Pmn ( cos θ). This predicts eastward propagating
waves, but it clearly breaks down when n = 1. In this case, the numerical results suggested a formula
of the form

λ = λ̂εα4, (A.2)

where λ̂ is a constant to be determined. In this asymptotic treatment, we are assuming that ε

remains of order unity as α → 0. Our starting point is Equation (16) withm = 1 and (A.2) inserted.
Expanding in powers of α2 and discarding terms of O(α4) and higher we obtain

(1−μ2)
d2ũθ

dμ2 − 2μ
dũθ

dμ
+ 2ũθ − ũθ

1 − μ2 + εα2
[
2μ(1−μ2)

dũθ

dμ
+ (λ̂+ 8μ2 − 1

)
ũθ

]
= 0. (A.3)

The leading order solution is ũθ = (1 − μ2)1/2 but this does not determine λ̂. We therefore let
ũθ = (1 − μ2)1/2 + εα2y, and obtain equation for y, namely

(1 − μ2)
d2y
dμ2 − 2μ

dy
dμ

+ 2y − y
1 − μ2 = (1 − λ̂ − 6μ2)(1 − μ2)1/2. (A.4)

The particular integral which satisfies the boundary conditions is y = A(1 − μ2)3/2, which when
inserted into (A.4) gives

A(10μ2 − 2) = 1 − λ̂ − 6μ2, leading to A = −3
5
, λ̂ = −1

5
. (A.5a,b)

This value of λ̂ agrees excellently with our numerical solutions for small values of α. The anomalous
slow magnetic Rossby mode therefore travels westward, whereas all other magnetic Rossby waves
at small α travel eastward. The leading order solution for this wave is simply ũθ = P11( cos θ).

Appendix B. Polar trapped Rossby waves at large α with m = 2
We now consider an exceptional case arising from the large α theory for themagnetic Rossby waves.
Recall that for m = 1 unstable modes occur, and for m ≥ 3 stable waves are found with frequency
λ proportional to α. It is clear from (59) that the case m = 2 must behave differently, and the
numerical results indicate that when m = 2 the frequency is real, and increases with α, but more
slowly than form ≥ 3. Asymptotic analysis suggests that form = 2

λ = βα1/2 + κ , (B.1)
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where β and κ are constants to be determined. The two scalings for μ,

(i) μ = 1 − γ1μ̂

α
, (ii) μ = 1 − γ2μ̃

α2 (B.2)

still hold, and we begin with scaling (i). Inserting (i) and (B.1) into (16) and retaining only the terms
of order α and α1/2, omitting terms of order unity, we get the leading order equation. As before, the
terms with factors ε(λ2 − α2m2) and −εμ2(λ + 2mα2)2/(λ2 − α2m2) are of order α2; however,
because μ is close to 1, the order α2 terms cancel out. In this m = 2 case, a further cancellation
occurs between the terms with factors

− m2

1 − μ2 − 2εm(λ + 2mα2)μ2

[(λ2 − α2m2)ε(1 − μ2) − m2]
which is O(1) rather than the expected O(α). Making the convenient choice γ1 = (1/4)ε1/2, we
obtain as our leading order equation

d2ũθ

dμ̂2 +
[
−1
4

+ β2ε1/2

4μ̂
+ βε1/2(1 + 2κ)

4α1/2μ̂

]
ũθ = 0, (B.3)

which is aWhittaker equation (Abramowitz and Stegun, 1965).We remove theα−1/2 termby setting
κ = − 1

2 . Then, provided that
β2 = 4(n + 1)

/
ε1/2, (B.4a)

(B.3) has a solution
ũθ = e−μ̂/2μ̂L(1)

n (μ̂), (B.4b)

where L(1)
n (μ̂) is the generalized Laguerre function (see (62). The lowest n = 0 mode is L(1)

0 (μ̂) = 1.
These solutions decay as μ̂ → ∞ and are proportional to μ̂ as μ̂ → 0. This is consistent with the
second scaling (ii), as this gives

μ̃
d2ũθ

dμ̃2 + 1
1 + μ̃

dũθ

dμ
− ũθ

μ̃
+ ũθ

1 + μ̃
= 0, (B.5)

whenwe choose γ2 = 1/(2ε). ũθ = μ̃ is an exact solution of this equation, verifying that the solution
(B.4a) is uniformly valid. The frequencies of them = 2 magnetic Rossby modes are therefore given
by

λ = βα1/2 − 1
2
, (B.6a)

where
β = ±2(n + 1)1/2

ε1/4
, n = 0, 1, 2 . . . ; (B.6b)

the plus and minus signs giving the eastward and westward propagating waves respectively. As with
the m ≥ 3 case, the magnitude of the westward travelling wave is one larger than the magnitude of
the eastward propagating wave.

Appendix C. Comparison of asymptotic and numerical results
In Table C1 we compare the results of Tables 1 and 2 with the asymptotic formula (42) for some
larger values of α, with m = 1. Also shown are the results from solving the 8th order equation
derived from squaring (40). Note that the connection for both the eastward and westward waves
and the small α, small ε theory of (19a,b) is that ν in (42) corresponds to ν = n−m− 1 (unlike the
connection in (25)), so that ν = 0 has been used here to compare with both Tables 1 and 2, which
have n = 2, m = 1. Recall that the m = n eastward and westward gravity mode evolves into the
magneto-Kelvin modes, which have different asymptotics.
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Table C1. Comparison between numerical and asymptotic estimates of the eigenvalues: MIG waves.

α ε Numerical Asymptotic (42) Asymptotic (40)

Eastward propagating waves
10 0.1 14.357 14.033 13.896
10 1.0 11.839 11.816 11.799
10 10 10.833 10.831 10.828
100 0.1 108.09 108.068 108.047
100 1.0 103.72 103.719 103.716
1000 0.01 1037.1 1037.079 1037.055
1000 0.1 1017.2 1017.154 1017.152

Westward propagating waves
10 0.1 −14.102 −13.787 −13.621
10 1.0 −11.719 −11.702 −11.679
10 10 −10.779 −10.778 −10.775
100 0.1 −108.03 −108.016 −107.992
100 1.0 −103.7 −103.694 −103.692
1000 0.01 −1037.1 −1037.054 −1037.031
1000 0.1 −1017.2 −1017.143 −1017.140

Table C2. Comparison between numerical and asymptotic estimates of the eigenvalues: equatorially
trapped fast magnetic Rossby waves.

α ε Numerical Asymptotic (44)

0.001 10 −0.095 −0.1054
0.001 100 −0.033 −0.0333
0.001 1000 −0.0106 −0.0106
0.01 10 −0.0956 −0.1059
0.01 100 −0.0346 −0.0348
0.01 1000 −0.0145 −0.0145
0.1 10 −0.1408 −0.1453
0.1 100 −0.1054 −0.1054
0.1 1000 −0.1006 −0.1006

Table C3. Comparison between numerical and asymptotic estimates of the eigenvalues: unstablem = 1
polar trapped magnetic Rossby waves.

α ε Numerical Asymptotic (44)

100 0.01 −0.482+ 92.67i −0.5+ 92.929i
100 0.1 −0.494+ 97.73i −0.5+ 97.764i
100 1 −0.498+ 99.29i −0.5+ 99.293i
100 10 −0.499+ 99.77i −0.5+ 99.776i
100 100 −0.500+ 99.91i −0.5+ 99.929i
1000 0.01 −0.498+ 992.90i −0.5+ 992.929i
1000 0.1 −0.499+ 997.76i −0.5+ 997.764i
1000 1 −0.500+ 999.29i −0.5+ 999.293i
1000 10 −0.500+ 999.75i −0.5+ 999.776i
1000 100 −0.500+ 999.81i −0.5+ 999.929i

Table C2 compares the numerical results in Table 4 for equatorially trapped fast magnetic Rossby
waves with the asymptotic formula (44). This is comparison is for the varicosem = 1, n = 2 mode
travelling westwards, as do all fast magnetic Rossby modes. We therefore use ν = 1 in formula
(44) since the relation ν = n − m holds for these modes. Recall that equatorial trapping of Rossby
waves can only occur for fast magnetic Rossby waves, and then only for α < 0.5 at large ε. Note
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Table C4. Comparison between numerical and asymptotic estimates of the eigenvalues: stable m = 2
polar trapped magnetic Rossby waves.

Numerical Asymptotic Numerical Asymptotic
α ε westward westward (B.6a) eastward eastward (B.6a)

100 0.01 −63.65 −63.746 62.71 62.746
100 0.1 −36.06 −36.066 35.07 35.066
100 1 −20.50 −20.500 19.51 19.500
100 10 −11.76 −11.747 10.76 10.747
100 100 −6.919 −6.825 5.919 5.825
1000 0.01 −200.50 −200.50 199.50 119.500
1000 0.1 −112.97 −112.97 111.97 111.968
1000 1 −64.50 −63.746 63.50 62.746

the excellent agreement at the largest values of ε, but recall that this asymptotic theory must break
down as α → 0.5.

Table C3 compares the numerical results for the unstable polar trapped magnetic Rossby waves
in Tables 3, 4, 6 and 7 with the asymptotic results given by (55) with m = 1. Recall there is no
distinction between slow and fast waves as the two branches collide to give the unstable waves. The
eigenvalues come as a complex conjugate pair, here we just give the unstable positive imaginary part
case. Generally the agreement is good. At α = 1000, ε = 100 the agreement is not as good as might
be expected. This is due to difficulty resolving the very thin boundary layers with the numerical
code. The asymptotic solution will be more accurate for these parameter values.

Table C4 compares the numerical results for the stable polar trapped magnetic Rossby waves
in Tables 5 and 8 which have m = 2 and n = 2 with the asymptotic results given by (B.6a) with
m = 2 and n = 0. The sinuous m = 2 n = 2 and varicose n = 3 modes both have the same
asymptotic structure at large α because the eigenfunctions are tiny in the equatorial regions. In the
cases α = 1000, ε = 1 and α = 100, ε = 100, the thin boundary layer was not fully resolved in the
numerical code.
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