Control de calidad en producto pesquero y acuícola del Golfo de Nicoya

Las investigaciones y actividades de extensión que se presentan en este libro es una recopilación de cuatro años de trabajo académico presentado y evaluado del 2010 al 2013. Estos productos del quehacer académico formaron parte de un proyecto financiado por el Consejo Nacional de Rectores (CONARE) bajo el nombre de Programa de Regionalización Interuniversitaria Pacifico Central, Iniciativas Interuniversitarias de Desarrollo Regional. Esta serie de investigaciones estuvieron enfocadas a desarrollar prácticas para incrementar el valor agregado de los productos marinos que comercializan las MIPYMES meta, así como acompañar a emprendimientos y a estas MIPYMES en el mejoramiento de su gestión de calidad del producto mediante la implementación de un sistema de aseguramiento de la calidad, acorde con la actividad productiva y el mercado que atiende. Además de promover el desarrollo integral de las comunidades, a partir del intercambio de saberes, y el desarrollo de una serie de metodologías que conlleven al fortalecimiento de las MIPYMES y emprendedores en la producción y comercialización de productos de pesca y acuacultura de excelente calidad y frescura.

Fabían Chavarría Solera

Actividades de investigación y extensión realizadas durante el periodo 2010-2013
Fabían Chavarría Solera
Cristian Fonseca Rodríguez

Control de calidad en producto pesquero y acuícola del Golfo de Nicoya
Control de calidad en producto pesquero y acuícola del Golfo de Nicoya

Actividades de investigación y extensión realizadas durante el periodo 2010-2013

Editorial Académica Española
Control de calidad en producto pesquero y acuícola comercializados por las comunidades costeras del Golfo de Nicoya, Puntarenas, Costa Rica: Actividades de investigación y extensión realizadas durante el periodo 2010-2013

Autores:

Fabián Chavarría Solera

Cristian Fonseca Rodríguez
Dedicatoria

Este libro se lo dedico mi esposa Angie Zavala Chacón por su amor, comprensión y ayuda incondicional.
Prefacio

El control de la calidad de los productos alimenticios pesqueros y acuícolas es uno de temas que debe ser prioritarios para las asociaciones de personas que conforman MIPYMES en algunas de las comunidades costeras del Golfo de Nicoya, las cuales comercializan este tipo de productos que cada vez más van en aumento de consumo, aceptación e incorporación a la dieta de los costarricenses.

Esta serie de investigaciones estuvieron enfocadas a desarrollar prácticas para incrementar el valor agregado de los productos marinos que comercializan las MIPYMES meta, así como acompañar a emprendimientos y MIPYMES en el mejoramiento de su gestión de calidad del producto mediante la implementación de un sistema de aseguramiento de la calidad, acorde con la actividad productiva y el mercado que atiende. Todo esto mediante dos iniciativas que se dieron paulatinamente, una después de la otra a lo largo de estos 4 años de investigación y extensión: Incremento en la competitividad de las MIPYMES del Pacífico Central mediante un plan de fortalecimiento interuniversitario regional y Aceleración y posicionamiento de las MIPYMES competitivas de la región Pacífico Central mediante un plan estratégico interuniversitario regional, respectivamente.

Estas iniciativas surgen debido a la urgencia de realizar alternativas productivas dirigidas aquellos grupos emprendedores y MIPYMES del pacífico central, que les permitan generar herramientas fáciles de implementar, con miras a solventar los problemas generados por la reducción de las capturas pesqueras y las deficiencias en la calidad y
frescura de los productos generados por esta actividad. Por su parte, con estas iniciativas se pretende que el sector pesquero y acuícola se vean favorecidos al tener alternativas para mejorar sus ingresos incrementando la competitividad mediante un plan de fortalecimiento interuniversitario regional. Además de promover el desarrollo integral de las comunidades, a partir del intercambio de saberes, y el desarrollo de una serie de metodologías que conlleven al fortalecimiento de las MIPYMES y emprendedores en la producción y comercialización de productos de pesca y acuacultura de excelente calidad y frescura.

Deseamos particularmente agradecer en primer lugar a Dios por habernos dado la gran oportunidad de participar en este magnífico proyecto. Al Programa de Regionalización Interuniversitaria Pacífico Central, CONARE. A la Estación de Biología Marina de la Universidad Nacional de Costa Rica por proporcionar la infraestructura y equipo necesario para los análisis. Así como a todos los que hicieron posible la realización del presente libro, entre ellos: La Licda. Sidey Arias Valverde, Lic. Gerardo Zúñiga Calero, la Bach. Rebeca Quesada Céspedes y Bach. Oscar Pacheco Prieto. Así como a todas la MIPYMES participantes en el proyecto que donaron sus muestras para hacer los respectivos análisis y generar los resultados los cuales les sirve a ellos mismos para incorporarlos a sus productos y poder aumentar su valor agregado. A los emprendimientos que están por entrar a formar parte del proyecto al montar su MIPYME de granja ostrícola, y por último pero no menos importante al capitán Orlando Torres, por su ayuda en las giras al mar para conseguir la muestra de estudios, sin las cuales no se hubiera podido llevar a cabo este trabajo.
Introducción ... 15
 I. Objetivo general .. 25
 II. Objetivos específicos .. 25
Capítulo 1. Actividades de investigación y extensión realizadas en el año 201027
 I. Análisis de la composición nutricional de piangua *Anadara tuberculosa* 27
 A. Metodología .. 27
 1. Colecta y tratamiento de las muestras .. 27
 2. Análisis bioquímicos .. 28
 B. Resultados y discusión ... 30
 II. Análisis de la composición nutricional de ostra *Crassostrea gigas* 32
 A. Metodología .. 32
 1. Colecta y tratamiento de las muestras .. 32
 2. Análisis bioquímicos .. 33
 B. Resultados ... 34
 III. Determinación del tiempo estimado de vida en piangua *A. tuberculosa* a tres
diferentes temperaturas ... 34
 A. Metodología .. 34
 1. Colecta y tratamiento de las muestras .. 34
 B. Resultados y discusión ... 35
 IV. Determinación Vida útil y cambios en la frescura de la piangua *Anadara
tuberculosa* (*Bivalvia: Arcidae*) en función de la temperatura de almacenamiento ...37
 A. Metodología .. 37
 1. Colecta y tratamiento de las muestras .. 37
 2. Análisis sensorial mediante método de índice de calidad (QIM) .. 38
 3. Determinación de pH muscular ... 39
 4. Análisis de valor K .. 39
Capítulo 2. Actividades de investigación y extensión realizadas en el año 2011

I. Productos empacados al vacío

II. Análisis de frescura y vida útil en filetes de Mano de piedra Centropomus unionensis empacados al vacío

A. Metodología

1. Colecta y tratamiento de la muestra

2. Análisis de la muestra

B. Resultados y discusión

III. Análisis de frescura y vida útil en filetes de Corvina reina Cynoscion albus empacados al vacío

A. Metodología

1. Colecta y tratamiento de la muestra

2. Análisis sensorial mediante método de índice de calidad (QIM)

3. Método Torrymetro (TM)

4. Análisis de valor K

B. Resultados y discusión

1. Análisis sensorial mediante método de índice de calidad (QIM)
2. Método Torrymetro (TM) ... 65
3. Cambios en el índice de frescura valor K 66
IV. Análisis de la composición nutricional de ostra, *Crassostrea gigas*, zona Punta Morales/Costa de Pájaros ... 68
A. Metodología ... 68
 1. Colecta y tratamiento de la muestra 68
 2. Análisis de la muestra ... 69
B. Resultados y discusión .. 70
V. Análisis de la composición nutricional de ostra, *Crassostrea gigas*, zona Punta Cuchillo/Paquera ... 72
A. Metodología ... 72
 1. Colecta y tratamiento de la muestra 72
 2. Análisis de la muestra ... 73
B. Resultados .. 74
VI. Determinación del tiempo estimado de vida y mantenimiento de la frescura de la ostra *C. gigas* a tres diferentes temperaturas .. 74
A. Metodología ... 74
 1. Colecta y tratamiento de la muestra 74
 2. Análisis de la muestra ... 75
VII. Otras actividades realizadas .. 76
A. Taller Prácticas para incrementar el valor agregado 76
B. Diseño de una embarcación para el mantenimiento y transporte del producto en óptimas condiciones ... 77
C. Taller sobre puestos de recibo apropiados para la comercialización de productos de la pesca ... 79
D. Plegable de logros 2010 ... 80
E. Primer Taller de Competitividad 2011 .. 80
F. Presentación de resultados 2010, Comisión de Regionalización Interuniversitaria del Pacífico Central (CRIPC), Universidad Nacional .. 80
VIII. Conclusiones ... 82

Capítulo 3. Actividades de investigación y extensión realizadas en el año 2012 85
I. Análisis de la composición nutricional de ostra, *Crassostrea gigas* zona Punta Cuchillo/Paquera ... 85
A. Metodología ... 85

7
1. Colecta y tratamiento de la muestra ... 85
2. Análisis de la muestra ... 86
B. Resultados y discusión .. 86
II. Análisis de frescura y vida útil en piangua A. tuberculosa empacada al vacío (con concha y solo carne, depuradas y sin depurar) ... 88
A. Metodología ... 88
1. Colecta y tratamiento de la muestra ... 88
2. Determinación de pH muscular .. 89
3. Análisis sensorial mediante método de índice de calidad (QIM) 89
4. Extracción de los nucleótidos y determinación de valor K 90
B. Resultados y discusión .. 90
1. Cambio en el valor de pH muscular ... 90
2. Cambios en las características sensoriales .. 91
3. Cambios en el índice de frescura valor K ... 91
III. Determinación del tiempo estimado de vida y pérdida de frescura en ostra C. gigas a tres diferentes temperaturas ... 92
A. Metodología ... 92
1. Colecta y tratamiento de la muestra ... 92
2. Análisis de la muestra ... 93
B. Resultados y discusión .. 94
1. Determinación del tiempo estimado de vida .. 94
2. Cambio en el valor de pH muscular ... 96
3. Cambios en las características sensoriales .. 97
4. Cambios en el índice de frescura valor K .. 98
IV. Otras actividades realizadas .. 99
A. Talleres prácticas para incrementar el valor agregado 99
V. Conclusiones ... 101

Capítulo 4. Actividades de investigación y extensión realizadas en el año 2013 103
I. Análisis de la composición nutricional de ostra, Crassostrea gigas. Zonas Isla Chira e Isla Cedros ... 103
A. Metodología ... 103
1. Preparación de reactivos y cotizaciones .. 103
2. Colecta y tratamiento de la muestra .. 103
3. Análisis de la muestra ... 105
B. Resultados y discusión .. 105
II. Análisis de la vida útil de ostra C. gigas almacenada en frascos de vidrio a 5 °C 109
A. Metodología ... 109
 1. Calibración del equipo HPLC y preparación de reactivos 109
 2. Curvas de calibración de nucleótidos (HPLC) 110
 3. Colecta y tratamiento de la muestra 111
 4. Extracción de los nucleótidos ... 112
 5. Determinación de ATP y sus compuestos de degradación para el cálculo de valor K, método HPLC .. 113
 6. Determinación de pH muscular ... 114
B. Resultados y discusión .. 115
 1. Curvas de calibración de nucleótidos (HPLC) 115
 2. Determinación de ATP y sus compuestos de degradación 116
 3. Determinación de pH muscular ... 116
III. Otras actividades realizadas .. 119
A. Coordinación y realización de talleres/visitas de seguimiento 119
B. Visita Inicial a los emprendimientos 119
C. Taller de iniciación a la ostricultura con prácticas para incrementar el valor agregado .. 122
D. Visita de seguimiento ACUAMAR en Isla Cedros 124
IV. Conclusiones ... 126

Bibliografía .. 129
ANEXOS .. 135
 Anexo 01. Hoja para evaluación sensorial QIM para ostra y piangua 135
 Anexo 02. Características de máquinas empacadoras al vacío mostradas por la empresa Ruxi SA .. 136
 Anexo 03. Hoja para evaluación sensorial QIM para filete de corvina 137
 Anexo 04. Características básicas de las instalaciones de un puesto de recibo de pescado y marisco ... 138
 Anexo 05. Croquis de diseño del puesto de recibo para la Asociación de Pescadores de Puerto Níspero ... 139
 Anexo 06. Plegable de logros 2010, Laboratorio de Control de Calidad 140
 Anexo 06. Hoja de evaluación para los puntos de control en las embarcaciones de pesca artesanal ... 141
Anexo 07. Hoja de evaluación para los puntos de control en los recibidores y centros de procesamiento ... 142
Anexo 08. Croquis de una planta de depuración y procesado de ostras, presentado por ACUAMAR en la visita de seguimiento .. 143
Anexo 09. Brochure 1 ... 144
Anexo 10. Brochure 2 ... 145
Anexo 11. Composición nutricional de la ostra C. gigas según zona de estudio 146
Anexo 12. Determinación del tiempo en que dura en morir la ostra C. gigas al estar almacenada a tres diferentes temperaturas ... 146
Anexo 13. Composición nutricional de ostra Japonesa C. gigas y piangua A. tuberculosa .. 147
Anexo 14. Activos adquiridos durante el 2010-2011 en el Laboratorio de Control de Calidad por parte del proyecto ... 148
Anexo 15. DETERMINACIÓN DE VALOR K EN PRODUCTOS MARINOS POR CROMATOGRAFÍA DE INTERCAMBIO IÓNICO .. 149
Anexo 16. DETERMINACIÓN DE VALOR K EN PRODUCTOS MARINOS (Método HPLC) ... 155
Anexo 17. Manual ... 163
Abreviaturas usadas en el libro

ACUAMAR Asociación de Cultivadores Marinos
ADP Adenosina-5-difosfato
Ag Plata
AgCl Cloruro de plata
Am Área del nucleótido de la muestra
AMP Adenosina-5-monofosfato
ANOVA Análisis de varianza
APROPESA Asociación de Proyectos Pesqueros de Costa de Pájaros
AOAC Association of Official Analytical Chemists
ASOCOG Asociación de cultivadores de ostras del Golfo
ASOPECUPACHI Asociación de pescadores Puerto Palito, Isla Chira
ASOMUTRAMA Asociación de Mujeres Trabajadoras del Marisco de Chomes
ASOMUPUMO Asociación de Mujeres de Punta Morales
ATP Adenosina-5-trifosfato
AyA Acueductos y Alcantarillados
b Intercepto de la curva de calibración
C Concentración del nucleótido en mg/g, de la muestra de carne
CONARE Consejo Nacional de Rectores
Cm Concentración del nucleótido en el HPLC mmol/L
°C Grado Celsius
CRIPC Comisión de Regionalización Interuniversitaria del Pacífico Central
EBM Estación de Biología Marina
ECB Escuela de Ciencias Biológicas
ECMAR Estación de Ciencias Marinas y Costeras
FAO Organización de las Naciones Unidas para la Agricultura y la Alimentación
g Gramos/ Peso de la muestra de carne en gramos
HCl Ácido clorhídrico
HPLC Cromatografía Liquida de alta densidad
HxR Inosina
Hx Hipoxantina
IIDR Iniciativas Interuniversitarias de Desarrollo Regional
IMP Inosina-5-monofosfato
ITCR Instituto Tecnológico de Costa Rica
INCOPESCA Instituto Costarricense de Pesca y Acuicultura
JICA Agencia de Cooperación Internacional del Japón
K Índice de calidad de los pescados refrigerados en porcentaje
Kcal Kilocalorías
Kg Kilogramos
KOH Hidróxido de Potasio
KPa Kilo Pascales
<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Litros</td>
</tr>
<tr>
<td>LCCTPP</td>
<td>Laboratorio de Control de Calidad y tecnología de Producto Pesquero</td>
</tr>
<tr>
<td>m</td>
<td>Pendiente de la curva de calibración</td>
</tr>
<tr>
<td>MAG</td>
<td>Ministerio de Agricultura y Ganadería</td>
</tr>
<tr>
<td>mL</td>
<td>Mililitros</td>
</tr>
<tr>
<td>mm</td>
<td>Milímetros</td>
</tr>
<tr>
<td>mmol</td>
<td>Milimol</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>M</td>
<td>Molaridad</td>
</tr>
<tr>
<td>MEIC</td>
<td>Ministerio de Economía Industria y Comercio</td>
</tr>
<tr>
<td>MIPYMES</td>
<td>Micro, pequeñas y mediana empresa</td>
</tr>
<tr>
<td>MS</td>
<td>Ministerio de salud</td>
</tr>
<tr>
<td>n</td>
<td>Número de muestras</td>
</tr>
<tr>
<td>N</td>
<td>Normalidad</td>
</tr>
<tr>
<td>nmol</td>
<td>Nano mol</td>
</tr>
<tr>
<td>nm</td>
<td>Nanómetros</td>
</tr>
<tr>
<td>NaCl</td>
<td>Cloruro de sodio</td>
</tr>
<tr>
<td>P</td>
<td>Significancia estadística de las correlaciones estimadas con un nivel de confianza del 95,0% cuando P<0.05.</td>
</tr>
<tr>
<td>PCA</td>
<td>Ácido perclórico</td>
</tr>
<tr>
<td>pH</td>
<td>Escala ácido-base</td>
</tr>
<tr>
<td>PMn</td>
<td>Peso molecular del nucleótido</td>
</tr>
<tr>
<td>QI</td>
<td>Índice de calidad</td>
</tr>
<tr>
<td>QIM</td>
<td>Método del Índice de Calidad (Quality Index Method)</td>
</tr>
</tbody>
</table>
Índice de correlación lineal de Pearson (P<0.05)

Regresión lineal

Rivoluciones por minuto

Servicio Nacional de Salud Animal

Torrymetro

Universidad de Costa Rica

Universidad Nacional

Ultravioleta

Micrómetro

Microlitro
Introducción

En Costa Rica el Golfo de Nicoya, es uno de los estuarios tropicales más productivos del Planeta, aspecto sumamente importante para los pobladores de sus costas por ser fuente de alimento, trabajo y recreación. A pesar de esta productividad, las capturas en el Golfo de Nicoya se han reducido con respecto a décadas anteriores, lo cual repercute en la situación socioeconómica de los pescadores. Estas comunidades costeras conforman una población en crecimiento altamente vulnerable y requieren alternativas viables para mejorar sus ingresos y probablemente, las medidas que se necesitan para recuperar las especies altamente explotadas, no permitirían su subsistencia (Palacios y Villalobos, 2007).

Por otra parte, en los últimos años también se ha observado un cambio significativo en los hábitos de consumo de la población, que demanda alimentos frescos, adecuados, prácticos, asequibles e innovadores. Este consumidor cada vez más informado exige productos que cumplan los atributos de calidad, inocuidad, y permitan ciertas especificaciones acorde al desempeño social, laboral y personal, aspectos que estarían lejos de cumplirse ya que según estudios realizados por JICA (2007), la comercialización de los productos pesqueros en muchas ocasiones se realiza bajo inapropiadas técnicas de manipulación, conservación y de las más elementales normas de higiene y sanidad.
Para tal efecto, los productos marinos destinados para el consumo humano, requieren que las actividades que se realizan en las diferentes etapas ya sea de la reproducción o la captura de estos organismos, se lleven a cabo de tal manera que se obtengan productos de alta calidad sanitaria, conforme a las leyes y reglamentos en materia de alimentos. La adopción de buenas prácticas en la producción y comercialización de organismos marinos tiene como objetivo asegurar que el producto que se obtiene sea de alta calidad de un carácter inocuo, es decir, que esté libre de bacterias, virus y/o compuestos químicos que atenten contra la salud de los consumidores.

Las prácticas responsables de captura y cultivo de estos organismos marinos, deben estar siempre dirigidas para garantizar esta calidad sanitaria del producto sin afectar de manera considerable el medio, logrando con ello la sustentabilidad de la actividad. Sin embargo, la calidad e inocuidad de estos productos puede verse afectada por problemas de contaminación, debido a industrias, actividades agrícolas, asentamientos y actividades humanas, ríos, fenómenos naturales, falta de instalaciones adecuadas y a la carencia de programas eficientes de higiene del personal. Asimismo, por un uso inadecuado de sustancias químicas.

Por otra parte, además de la pesca una de las actividades económicas empleadas por las agrupaciones de personas de las zonas costeras es el cultivo y reproducción de bivalvos, entre los cuales los más importantes son la piangua (*Anadara tuberculosa*) y la Ostra Japonesa (*Crassostrea gigas*). Estos bivalvos son un recurso comercialmente valioso, en muchos casos fáciles de cultivar o recolectar en las zonas costeras y muy importantes para la ecología marina y la dieta humana ya que son un fuente importante de nutrientes (Fuentes *et al.*, 2009).
Anadara tuberculosa (Sowerby, 1833) es un molusco bivalvo que habita en los ecosistemas de manglar y posee una amplia distribución en la costa del Pacífico de América, desde Baja California hasta Tumbez, Perú (Keen, 1971); representa el molusco comercialmente más importante cosechado a lo largo de esta costa (Mackenzie, 2001) por lo que constituye una especie con grandes posibilidades para el desarrollo pesquero (Cruz y Palacios 1983, García-Domínguez et al. 2008).

En Costa Rica, A. tuberculosa, conocida comúnmente como piangua, constituye uno de los principales moluscos bivalvos de importancia comercial (Campos et al., 1990), base de una pesquería exclusivamente artesanal, catalogada como una fuente de empleo para muchas personas, principalmente mujeres y niños, de estratos socioeconómicos muy bajos, identificados como los más pobres y desorganizados (Mackenzie, 2001). Además, esta especie constituye la de mayor consumo en el país y a lo largo de su distribución, las cuales se sirven en forma de ceviche (Fernández, 1983, Mackenzie, 2001). Las pianguas son mariscos muy perecederos y su almacenamiento en buenas condiciones tanto como sea posible constituye un objetivo muy importante para los productores.

Existen variados reportes sobre patrones generales de descomposición y estabilidad del almacenamiento en productos pesqueros. Así mismo, un número de compuestos o grupos de ellos han sido sugeridos como indicadores químicos de descomposición en mariscos; sin embargo, estos no son conocidos o aplicables en la detección de la descomposición de estos productos (Erkan, 2005). Una revisión de la literatura revela alguna información sobre la vida útil en camarones, langostas y cangrejos (Flores y Crawford 1973, Aman et al., 1984, Fatima y Qadri, 1985, Shamshad et al.,
Muy poca información sobre organismos del mismo grupo que las pianguas (Krzyznowek y Wiggin 1979, Vasakou et al. 2003).

En cuanto a la ostra la principal especie cultivada en el mundo es la *Crassostrea gigas*, conocida popularmente como “Ostra del Pacífico” u “Ostra Japonesa”, representando el 98% de la producción total de ostras. Los principales países productores de esta especie son China, Japón, Corea, Estados Unidos, Francia e México (Bermúdez, 2006).

Esta especie tiene gran interés comercial, es originaria de Asia (especialmente China, Japón y Corea), y dada su gran capacidad de adaptación a los diferentes condiciones del medio (temperatura, salinidad, pH, oxígeno, etc.) ha sido introducida en diferentes países de todos loscontinentes, donde se realiza su cultivo con éxito, como: Estados Unidos, Hawai, Tahiti, Islas Palau, Australia, Nueva Zelanda, Francia, Inglaterra, Sudáfrica, Chile, entre otros. Desde 1673, cuando se inicia su cultivo en el Japón, las técnicas han sido constantemente perfeccionadas (Bermúdez, 2006).
Las ostras, como la mayoría de los moluscos, presentan el cuerpo irregular, protegido externamente por una concha, conformada por dos valvas alargadas: la valva superior o derecha, que es plana; y la valva inferior o izquierda, que es levemente cóncava, por la que se fija al sustrato. Estas conchas son gruesas y rugosas. La unión entre las dos valvas es hecha con el auxilio del músculo aductor y también a través de un ligamento situado en la región posterior. Los anillos de crecimiento son escamosos y los bordes de las valvas son más frágiles (Bermúdez, 2006)

La ostra del Pacífico tiene sexos separados, es decir que existe una ostra macho y una ostra hembra. Durante una época la ostra puede ser macho y en la siguiente estación la ostra puede cambiar a hembra. Los factores que influyen en el desarrollo de los huevos son temperatura, salinidad y calidad del agua. La reproducción es externa, es decir que los adultos expulsan sus huevos y espermas en el mar y ahí ocurre la fecundación en condiciones físico-químicas y climáticas apropiadas (Vásquez, et al. 2007).

En el Golfo de Nicoya la semilla de ostra C. gigas es obtenida, reproducida y administrada en el Laboratorio de Biología, Cultivo y Reproducción de Moluscos de la Estación de Biología Marina de la Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica. EBM-ECB es un centro de investigación, docencia, extensión y producción para generar pautas para el aprovechamiento sostenible de los recursos marinos y costeros, y la formación de profesionales con conocimiento en la sostenibilidad de dichos recursos.

En el Laboratorio de Biología, Cultivo y Reproducción de Moluscos se desarrolla la biotecnología aplicada en el cultivo de este molusco. Actualmente mantiene la producción de semilla y suple a varias comunidades
costeras, las cuales colocan su producción en el mercado nacional. Investigación en moluscos con potencial para el cultivo.

En el laboratorio se realiza el proceso de inducción a desove, las ostras padrotes son colocadas en agua a 29ºC, cuando los organismos inician su desove se individualizan. El mantenimiento larval involucra todo el periodo comprendido desde el momento de la fertilización cuando se da la expulsión del primer cuerpo polar, el proceso de división celular, hasta el desarrollo de larvas y larvas embonadas. Durante éste periodo se tienen que alimentar diariamente y realizarse recambios de agua cada dos días; además monitorearse diariamente.

Se mantienen las semillas de ostras en un proceso de preengorda utilizando bandejas rectangulares de alrededor de 400 L y utilizando un sistema de tipo “air lift”, hasta que las semillas alcancen la talla de 3 mm para ser enviadas a los grupos. Durante el tiempo que las semillas permanezcan en el laboratorio deben alimentarse diariamente, además de ser limpiadas y realizárseles recambios constantes de agua. Conforme los animales crecen y aumenta su tamaño hay que realizar un proceso de desdoble, que consiste en emplear tamices de distintos tamaños para poder separar las distintas tallas y así lograr separar por ejemplo animales con tamaños superiores a 2 mm de aquellos que aún se encuentran por debajo de ésta.

Teniendo en cuenta la importancia pesquera/acuícola y social es necesario realizar un estudio más integral que incluyan los aspectos relacionados con la composición nutricional y los cambios en la frescura que determinarán la vida útil de estos productos marinos. En ese sentido, los análisis nutricionales son de mucha importancia en los productos alimenticios de interés comercial, ya que con estos se obtiene la información bioquímica
nutricional de la cual está constituida, además de darle un valor agregado al conocer cuánto es el porcentaje de cada uno de estos componentes en el producto alimenticio a ser comercializado, entre estos los más importantes son; proteína cruda, lípidos, cenizas, carbohidratos y valor calórico.

En otras palabras, estos estudios bioquímicos de composición nutricional permiten determinar el valor alimenticio de la carne y proporcionan información que ayuda a entender el balance energético y ecológico de los organismos (Giese et al., 1974). Varía considerablemente entre las diferentes especies y también entre individuos de una misma especie, dependiendo de la edad, sexo, medio ambiente y estación del año.

Además de apegándose al reglamento vigente en Costa Rica para productos que incluyan etiquetado nutricional, por el Decreto Ejecutivo N° 30256-MEIC-S RTCR 135:2002 Etiquetado nutricional de los alimentos y lo dispuesto en los reglamentos técnicos nacionales específicos para los productos, así como las disposiciones complementarias contenidas en el Codex Alimentarius. (MEIC, 2002).

Por otra parte, otro tipo de análisis, importante para determinar la calidad e inocuidad del producto es el valor K, este es un método de medición de frescura que tiene como indicador al compuesto producido por la descomposición del nucleótido, por lo tanto mide el nivel de frescura de la carne. En otras palabras, se caracteriza por ser un método que muestra la frescura en forma numérica (Ishihara s.f., Kawashima, et al. 1992).

Al morir el pez se produce la degradación del ATP (Adenosin-5´-trifosfato) en el músculo del animal debido a una serie de reacciones enzimáticas, produciéndose una serie de compuestos tales como ADP(Adenosin-5´-
difosfato), AMP (Adenosin-5´-monofosfato), IMP(Monofosfato de Inosina), Inopina e Hipoxantina. El ATP se descompone pasando por el siguiente recorrido ATP --- ADP--- AMP --- IMP --- Inosina (HxR) --- Hipoxantina (Hx) (Saito et al.1959).

La reacción de la carne de los productos marinos después de la muerte, avanza hacia la derecha, pero, como la cantidad total de estos compuestos químicos relacionados con el ATP es casi fija se puede calcular en porcentaje del total de la inosina y de la Hipoxantina en comparación con el total de todos los compuestos, llamándose valor K, propuesto como un método para demostrar el nivel de frescura de la carne de pescado y moluscos (Ishihara, s.f.).

En cuanto a los métodos para mantener frescura alargando la vida útil y que agregan valor a los productos es el empaque al vacío. Este es uno de los sistemas más exitosos para la conservación de alimentos, este método tiene como fin retirar el aire del contenedor, con lo cual se puede obtener una mayor vida útil al poder conservar las características organolépticas ya que al eliminar el oxígeno no existe crecimiento de microorganismos aeróbicos, psicrofilos, y mesófilos que son los que originan la rancidez, la decoloración, y la descomposición de los alimentos. Además de que es un excelente método para incrementar el valor agregado en productos marinos destinados para el consumo humano como el pescado y los bivalvos comercializados por las comunidades costeras, con lo cual se ven beneficiadas económicamente a la vez que ofrecen al consumidor productos de alta calidad.

Otro método es la depuración, o purificación, este es un proceso que consiste en mantener a los moluscos en tanques de agua de mar limpia para que lleven a cabo su actividad normal de bombeo durante un período de
tiempo que puede variar desde unas horas hasta varios días. Se mantienen en condiciones que permitan maximizar la actividad natural de filtración y expulsar así el contenido intestinal. De esta manera se potencia la separación de los contaminantes expulsados de los moluscos bivalvos y se impide que se recontaminen. Es una técnica aplicada en muchas partes del mundo para eliminar los contaminantes microbianos de aquellos moluscos bivalvos que estén ligeramente o moderadamente contaminados,

Al principio, la depuración se desarrolló como una medida, entre muchas, para abordar el problema de numerosos brotes de fiebre tifoidea relacionados con el consumo de moluscos (causada por la bacteria Salmonella typhi), que provocó enfermedades y muertes a finales del siglo XIX y a principios del siglo XX en muchos países de Europa y en los Estados Unidos de América. Hoy en día normalmente la depuración se lleva a cabo por exigencias de la legislación internacional, nacional o local, pero también se aplica como iniciativa de la industria para proteger a sus consumidores, o para demostrar la diligencia debida o satisfacer los requisitos legales de otros países o regiones a los que se vaya a exportar (Lee et al. 2010).

La depuración es una forma efectiva de eliminar muchas bacterias fecales contaminantes de los moluscos bivalvos, Una depuración efectiva requiere que los moluscos se manipulen adecuadamente durante la recolección, el transporte y el almacenamiento previos a la depuración. Asimismo, se requiere un diseño y funcionamiento adecuados para cumplir los requisitos para la eliminación y separación de contaminantes. De la misma manera, las instalaciones de estos sistemas deben funcionar manteniendo unos buenos niveles de higiene alimentaria para prevenir contaminaciones cruzadas entre los distintos lotes de moluscos o una re-contaminación de los mismos (Lee et al. 2010).
La justificación de los estudios de investigación y extensión realizados surge debido a una necesidad y urgencia de realizar alternativas productivas dirigidas aquellos grupos emprendedores y MIPYMES del Golfo de Nicoya para desarrollar prácticas para incrementar el valor agregado de los productos marinos que comercializan, con lo cual el sector pesquero y acuícola se verán favorecidos al tener alternativas para mejorar sus ingresos incrementando la competitividad mediante un plan de fortalecimiento interuniversitario regional.

Además de que se pretende generar herramientas fáciles de implementar, con miras a solventar los problemas generados por la reducción de las capturas pesqueras y las deficiencias en la calidad y frescura de los productos generados por esta actividad. Se pretende promover el desarrollo integral de las comunidades, a partir del intercambio de saberes, además de desarrollar una serie de metodologías que conlleven al fortalecimiento de las MIPYMES y emprendedores en la producción y comercialización de productos de pesca y acuacultura de excelente calidad y frescura.

Por consiguiente, se parte del objetivo de determinar la vida útil, cambios en la frescura, así como la composición nutricional de la piangua *Anadara tuberculosa*, la ostra *Crassostrea gigas* y de otros recursos pesqueros de interés comercial para las comunidades costeras. Desarrollando así prácticas para incrementar el valor agregado de estos productos marinos comercializados por varias MIPYMES de la zona, formadas por pequeñas agrupaciones dentro de estas comunidades costeras del Golfo de Nicoya.
I. Objetivo general

Desarrollar prácticas para incrementar el valor agregado de los productos marinos que comercializan varias MIPYMES, formadas por pequeñas agrupaciones dentro de algunas comunidades costeras del Golfo de Nicoya. Acompañando a estos emprendimientos y MIPYMES en el mejoramiento de su gestión de calidad del producto mediante la implementación de un Sistema de Aseguramiento de la Calidad, acorde con la actividad productiva y el mercado que atiende.

II. Objetivos específicos

- Determinar la calidad de los productos de la pesca y/o acuicultura comercializados por las MIPYMES, por medio de un estudio sistemático de los cambios químicos, físicos y sensoriales durante el almacenamiento.

- Determinar la composición nutricional de la porción comestible de los productos acuícolas (ostra y piangua) comercializados por las MIPYMES meta.

- Fortalecer a emprendedores y MIPYMES mediante la producción y comercialización de productos de pesca y acuacultura con excelente frescura y calidad.

- Verificar la efectividad del empaque al vacío como método de conservación (frescura y vida útil) mediante diferentes análisis físico-químicos.

- Determinar el tiempo estimado de vida y la vida útil en los productos acuícolas comercializados por las MIPYMES (ostra y piangua), al estar almacenada a tres diferentes temperaturas.
• Comparar la vida útil en el almacenamiento en hielo de la piangua (*A. tuberculosa*) depurada y sin depurar, empacadas al vacío en las presentaciones de solo la carne y entera (con concha), mediante los diferentes análisis para determinar perdida de frescura.
• Medir la calidad/frescura en otros productos con valor agregado producidos/comercializados por las MIPYMES aplicando diferentes métodos.
• Realizar eventos; talleres, reuniones, recopilación de información, visitas de seguimiento, inspecciones, elaboración de material didáctico y demás actividades aplicados a las Emprendimientos y MIPYMES para comunicar los resultados obtenidos y establecer recomendaciones y sugerencias para el mejoramiento de la calidad de sus productos, además de verificar las mejoras implementadas.
Capítulo 1

Actividades de investigación y extensión realizadas en el año 2010

I. Análisis de la composición nutricional de piangua *Anadara tuberculosa*

A. Metodología

1. Colecta y tratamiento de las muestras

Muestras mensuales de una población de piangua, *Anadara tuberculosa* (*Bivalvia: Arcidae*) (entre 15 a 17 ejemplares) fueron colectados mensualmente, de agosto del 2009 hasta la julio del 2010, la muestra fue traída directamente de la MIPYME Asociación de Mujeres Trabajadoras del Marisco de Chomes (ASOMUTRAMA) Chomes Puntarenas, Costa Rica. La *A. tuberculosa*, “piangua” como vulgarmente se le conoce, es producida y comercializada por esta MIPYME. Al conocer su composición nutricional se le está dando un valor agregado el cual se puede indicar al comercializarlas.

Figura 1. Muestra de piangua *A. tuberculosa* para análisis nutricional
Los ejemplares fueron transportados al laboratorio de Control de Calidad y Tecnología de Productos Pesqueros de la Estación de Biología Marina, Universidad Nacional, en donde se tomó la longitud total (máxima medida desde el eje anterior-posterior), altura y diámetro utilizando un vernier de 0.05 mm de precisión. Posteriormente las pianguas fueron pesadas, registradas como peso total y peso fresco, para este último se abrieron sus conchas, se removió y drenó la carne por 10 minutos con papel adsorbente y se registró el peso fresco de la carne. Todo el tejido fue deshidratado en un horno a 100º C por 24 horas para posteriormente medir su peso seco utilizando una balanza con precisión de 0.01 g, determinando así el porcentaje de humedad. El material seco se molió y homogenizó para realizar los análisis bioquímicos por duplicado.

2. **Análisis bioquímicos**

Para la caracterización bioquímica de los componentes de la carne, se estimaron los niveles de humedad, lípidos, proteínas, cenizas y carbohidratos. El contenido de humedad se determinó según la metodología de AOAC, 1984. El nitrógeno se determinó por el método de Kjendhal.
(AOAC, 1984) y se convirtió a proteína multiplicando por el factor 6.25 (Crisp, 1971).

![Figura 3. Análisis de proteína por método Kjendhal](image)

Los lípidos fueron obtenidos usando un extractor soxhlet (Lab-Line Instruments, Inc., ILL, USA) con éter de petróleo (AOAC, 1984).

![Figura 4. Análisis de lípidos usando un extractor Soxhlet](image)

Las cenizas se obtuvieron por calcinación lenta, incrementando la temperatura hasta 500 °C donde se mantuvo por 12 horas (AOAC, 1984). Los carbohidratos fueron calculados por diferencia luego de obtener el porcentaje de lípidos, proteínas y cenizas. El contenido calórico de la carne...
seca de *A. tuberculosa* se calculó usando los factores de conversión recomendados para moluscos: 5.7 Kcal/g para proteínas, 4.2 Kcal/g para carbohidratos y 9.5 Kcal/g para lípidos (Ansell *et al.* 1980, Lucas y Beninger 1985).

B. Resultados y discusión

Los resultados para las variaciones mensuales de la composición química nutricional de la porción comestible de la especie analizada piangua *A. tuberculosa* se presentan en el Cuadro 1. Teniendo en consideración estos valores, se podría afirmar que esta especie es del tipo de molusco de muy bajo contenido graso y moderado contenido proteico, lo cual lo convierte en un alimento de bajas calorías y nutritivo.

Como se mencionó anteriormente, el contenido graso es muy escaso (promedio 1.1%), obteniendo ventajas comparativas frente a la recomendación generalizada de reducir el consumo de grasas. La humedad fue el componente porcentual con mayor presencia en el organismo, el cual presento un máximo de 87.7 % en el mes de noviembre y un mínimo de 79.2 % en agosto.

Por su parte, el porcentaje de proteínas fue el segundo componente más abundante con valores de 13.7 % a 8.1 para los meses de agosto y noviembre respectivamente. En cuanto al valor calórico, este se mantuvo relativamente constante a través del año de estudio presento un máximo y mínimo en estos mismos meses de octubre y diciembre con valores de 5.23 y 4.96 Kcal respectivamente. En base a estos resultados se puede aseverar que el contenido proteico es inversamente proporcional a la humedad.
CUADRO 1.
Composición química nutricional de la porción comestible de *A. tuberculosis*. (Base húmeda)

<table>
<thead>
<tr>
<th>Mes-Año</th>
<th>Humedad (%)</th>
<th>Cenizas (%)</th>
<th>Lípidos (%)</th>
<th>Proteínas (%)</th>
<th>Carbohidratos (%)</th>
<th>Valor calórico (Kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ago-09</td>
<td>79.2</td>
<td>1.8</td>
<td>1.3</td>
<td>13.7</td>
<td>4.1</td>
<td>5.17</td>
</tr>
<tr>
<td>Sep-09</td>
<td>82.3</td>
<td>1.0</td>
<td>0.9</td>
<td>11.7</td>
<td>4.1</td>
<td>5.22</td>
</tr>
<tr>
<td>Oct-09</td>
<td>84.4</td>
<td>1.3</td>
<td>1.4</td>
<td>9.6</td>
<td>3.3</td>
<td>5.23</td>
</tr>
<tr>
<td>Nov-09</td>
<td>87.7</td>
<td>1.2</td>
<td>0.9</td>
<td>8.1</td>
<td>2.2</td>
<td>5.15</td>
</tr>
<tr>
<td>Dic-09</td>
<td>86.4</td>
<td>1.3</td>
<td>0.7</td>
<td>8.3</td>
<td>3.3</td>
<td>4.96</td>
</tr>
<tr>
<td>Ene-10</td>
<td>85.4</td>
<td>1.8</td>
<td>1.6</td>
<td>9.3</td>
<td>1.9</td>
<td>5.22</td>
</tr>
<tr>
<td>Feb-10</td>
<td>83.5</td>
<td>1.8</td>
<td>0.9</td>
<td>10.3</td>
<td>4.3</td>
<td>5.15</td>
</tr>
<tr>
<td>Mar-10</td>
<td>85.0</td>
<td>1.4</td>
<td>1.2</td>
<td>9.2</td>
<td>3.2</td>
<td>5.15</td>
</tr>
<tr>
<td>Abril-10</td>
<td>84.5</td>
<td>1.5</td>
<td>1.4</td>
<td>9.2</td>
<td>3.3</td>
<td>5.16</td>
</tr>
<tr>
<td>May-10</td>
<td>83.1</td>
<td>1.5</td>
<td>1.7</td>
<td>10.3</td>
<td>3.5</td>
<td>5.28</td>
</tr>
<tr>
<td>Jun-10</td>
<td>80.2</td>
<td>1.5</td>
<td>2.2</td>
<td>11.9</td>
<td>4.2</td>
<td>5.37</td>
</tr>
<tr>
<td>Jul-10</td>
<td>80.9</td>
<td>1.4</td>
<td>1.7</td>
<td>10.9</td>
<td>5.1</td>
<td>5.22</td>
</tr>
</tbody>
</table>

Los resultados indican claramente que los compuestos bioquímicos varían mensualmente y que gran parte de esto puede estar relacionado con el ciclo reproductivo. Similares observaciones han sido informadas en otros bivalvos tales como *Mytella guyanensis* (Cruz *et al.* 1993), *Ruditapes decussatus* y *Tapes philippinarum* (Beninger *et al.* 1984).
II. Análisis de la composición nutricional de ostra *Crassostrea gigas*

A. Metodología

1. *Colecta y tratamiento de las muestras*
Para la determinación nutricional en ostra se utilizaron mensualmente 30 unidades por lote de ostra *C. gigas* las cuales se dividieron en tres grupos de 10 ejemplares cada uno, esto a partir de agosto del 2010. La muestra proviene de las MIPYMES Asociación de Mujeres de Punta Morales (ASOMUPUMO) y Asociación de Proyectos Pesqueros de Costa de Pájaros (APROPESA) Puntarenas, Costa Rica.
Los ejemplares fueron transportados al laboratorio de Control de Calidad y Tecnología de Productos Pesqueros de la Estación de Biología Marina, Universidad Nacional, en donde se tomaron las mediciones biométricas; longitud total (máxima medida desde el eje anterior-posterior), altura y diámetro utilizando un vernier de 0.05 mm de precisión. Posteriormente las ostras son pesadas, registradas como peso total y peso fresco, para este último se abrieron sus conchas, se removió y drenó la carne por 10 minutos con papel adsorbente y se registró el peso fresco de la carne. Todo el tejido fue deshidratado en un horno a 100º C por 24 horas para posteriormente medir su peso seco utilizando una balanza con precisión de 0.01 g determinando así el porcentaje de humedad.

2. **Análisis bioquímicos**

El material seco de cada grupo se molió y homogenizó para determinar por duplicado proteínas, lípidos y ceniza s, siguiendo la misma metodología de AOAC, 1984 para el análisis nutricional de piangua. Los resultados de los análisis para los primeros dos meses se presentan en el Cuadro 2. Los resultados se discutirán más adelante, en el capítulo 3 cuando el estudio este completo. En el anexo 13 se presenta un cuadro comparativo de la
composición nutricional de la ostra Japonesa C. gigas y la piangua A. tuberculosa.

B. Resultados

CUADRO 2.
Composición química nutricional de la porción comestible de C. gigas. (Base húmeda)

<table>
<thead>
<tr>
<th>Mes-Año</th>
<th>Humedad (%)</th>
<th>Cenizas (%)</th>
<th>Lípidos (%)</th>
<th>Proteínas (%)</th>
<th>Carbohidratos (%)</th>
<th>Valor calórico (Kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ago-10</td>
<td>96.5</td>
<td>0.3</td>
<td>0.5</td>
<td>1.8</td>
<td>0.9</td>
<td>5.41</td>
</tr>
<tr>
<td>Ago-10</td>
<td>96.8</td>
<td>0.2</td>
<td>0.4</td>
<td>1.7</td>
<td>0.8</td>
<td>5.41</td>
</tr>
<tr>
<td>Ago-10</td>
<td>96.6</td>
<td>0.3</td>
<td>0.5</td>
<td>1.7</td>
<td>0.9</td>
<td>5.45</td>
</tr>
<tr>
<td>Sep-10</td>
<td>96.6</td>
<td>0.2</td>
<td>0.4</td>
<td>1.7</td>
<td>1.1</td>
<td>5.27</td>
</tr>
<tr>
<td>Sep-10</td>
<td>96.2</td>
<td>0.2</td>
<td>0.4</td>
<td>1.9</td>
<td>1.2</td>
<td>5.28</td>
</tr>
<tr>
<td>Sep-10</td>
<td>96.2</td>
<td>0.3</td>
<td>0.4</td>
<td>1.9</td>
<td>1.2</td>
<td>5.29</td>
</tr>
</tbody>
</table>

III. Determinación del tiempo estimado de vida en piangua A. tuberculosa a tres diferentes temperaturas.

A. Metodología

1. **Colecta y tratamiento de las muestras**

Se tomaron 45 unidades las cuales se dividieron en tres grupos de 15 ejemplares cada uno, un grupo se coloca en hielo (2ºC), otro en refrigeradora (8ºC) y el último a temperatura ambiente (25ºC) (figura 7).

Las muestras almacenadas a las diferentes temperaturas se inspeccionaron sensorialmente cada 12 horas. Como signo de referencia para saber si el
animal está vivo, se verificó que las valvas están completamente cerradas y que presentan resistencia al intentar abrirlas.

Figura 7. Almacenamiento de las muestras de piangua *A. tuberculosa* a tres diferentes temperaturas

B. Resultados y discusión

Como se puede apreciar en los cuadros, la temperatura a la que mayor tiempo dura la piangua *A. tuberculosa* estando viva, es a temperatura ambiente de 25 °C presentando promedios de 156,7, 152,5 y 128,0 horas para los tres ensayos respectivamente (Cuadro 5). Le sigue el almacenamiento en hielo, en el cual duraron un promedio de 52,5, 68,0 y 51,7 horas para los tres ensayos realizados (Cuadro 3).

Por último la temperatura a la que menos duraron según ensayos realizados fue a la temperatura de refrigeración a 8 °C, las cuales presentaron promedios de 48,9, 44,0 y 23,3 horas respectivamente (Cuadro 4).
CUADRO 3.
Determinación del tiempo que dura en morir la piangua *A. tuberculosa* al estar almacenada en hielo

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Fecha de inicio</th>
<th>Hora de inicio</th>
<th>Fecha en morir</th>
<th>Hora en morir</th>
<th>Muestras muertas</th>
<th>Tiempo en morir (h)</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31/08/2010</td>
<td>12:00 pm</td>
<td>01/09/2010</td>
<td>04:00 p.m.</td>
<td>12, 9</td>
<td>28</td>
<td>52,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>02/09/2010</td>
<td>08:00 a.m.</td>
<td>15, 10, 6</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03/09/2010</td>
<td>08:00 a.m.</td>
<td>11, 7, 4, 2</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03/09/2010</td>
<td>10:00 a.m.</td>
<td>5, 3, 14, 8, 1, 13</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28/09/2010</td>
<td>12:00 pm</td>
<td>29/09/2010</td>
<td>08:00 a.m.</td>
<td>3, 4, 11, 12, 13, 15</td>
<td>20</td>
<td>68,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30/09/2010</td>
<td>08:00 a.m.</td>
<td>6, 10, 14, 5, 7, 8, 1</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>04/10/2010</td>
<td>09:00 a.m.</td>
<td>9, 2</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26/10/2010</td>
<td>12:00 pm</td>
<td>28/10/2010</td>
<td>07:00 a.m.</td>
<td>4, 7, 9, 11, 13, 14</td>
<td>43</td>
<td>51,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28/10/2010</td>
<td>08:00 a.m.</td>
<td>2, 3, 5, 6, 10, 12</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29/10/2010</td>
<td>08:00 a.m.</td>
<td>1, 8, 15</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

CUADRO 4.
Determinación del tiempo que dura en morir la piangua *A. tuberculosa* al estar almacenada en refrigeración a 8 ºC

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Fecha de inicio</th>
<th>Hora de inicio</th>
<th>Fecha en morir</th>
<th>Hora en morir</th>
<th>Muestras muertas</th>
<th>Tiempo en morir (h)</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31/08/2010</td>
<td>12:00 pm</td>
<td>31/08/2010</td>
<td>02:30 p.m.</td>
<td>1, 3, 9, 11</td>
<td>2</td>
<td>48,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01/09/2010</td>
<td>08:00 a.m.</td>
<td>12, 15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01/09/2010</td>
<td>02:00 p.m.</td>
<td>14, 13</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>02/09/2010</td>
<td>12:00 a.m.</td>
<td>8</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>02/09/2010</td>
<td>02:00 p.m.</td>
<td>5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03/09/2010</td>
<td>10:00 a.m.</td>
<td>7</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03/09/2010</td>
<td>02:00 p.m.</td>
<td>2</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>04/09/2010</td>
<td>05:00 p.m.</td>
<td>4, 6, 10</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28/09/2010</td>
<td>12:00 pm</td>
<td>30/09/2010</td>
<td>08:00 a.m.</td>
<td>1, 2, 3, 4, 5</td>
<td>44</td>
<td>44,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30/09/2010</td>
<td>08:00 a.m.</td>
<td>6, 7, 8, 9, 10</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30/09/2010</td>
<td>08:00 a.m.</td>
<td>11, 12, 13, 14, 15</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26/10/2010</td>
<td>12:00 pm</td>
<td>27/10/2010</td>
<td>08:00 a.m.</td>
<td>1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15</td>
<td>20</td>
<td>23,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27/10/2010</td>
<td>10:00 a.m.</td>
<td>13</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27/10/2010</td>
<td>04:00 p.m.</td>
<td>8</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>
Determinación del tiempo que dura en morir la piangua A. tuberculosa al estar almacenada a temperatura ambiente 25 ºC

CUADRO 5.

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Fecha de inicio</th>
<th>Hora de inicio</th>
<th>Fecha en morir</th>
<th>Hora en morir</th>
<th>Muestras muertas</th>
<th>Tiempo en morir (h)</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31/08/2010</td>
<td>12:00 pm</td>
<td>08/09/2010</td>
<td>12:00 p.m.</td>
<td>3, 12</td>
<td>118</td>
<td>156,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10/09/2010</td>
<td>08:00 a.m.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11/09/2010</td>
<td>08:45 a.m.</td>
<td>1, 8, 14</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>28/09/2010</td>
<td>12:00 pm</td>
<td>04/10/2010</td>
<td>09:00 a.m.</td>
<td>2, 3, 5</td>
<td>141</td>
<td>152,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>05/10/2010</td>
<td>08:00 a.m.</td>
<td>1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26/10/2010</td>
<td>12:00 pm</td>
<td>31/10/2010</td>
<td>08:00 a.m.</td>
<td>2, 7, 9, 12</td>
<td>116</td>
<td>128,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01/11/2010</td>
<td>08:00 a.m.</td>
<td>1, 3, 4, 5, 6, 8, 10, 11, 13, 14, 15</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

IV. Determinación Vida útil y cambios en la frescura de la piangua Anadara tuberculosa (Bivalvia: Arcidae) en función de la temperatura de almacenamiento

A. Metodología

1. Colecta y tratamiento de las muestras

Muestras de una población de piangua (n= 45) fueron colectados en el estero Chomes, Puntarenas, Costa Rica. Los ejemplares fueron transportados inmediatamente al laboratorio en cajas de polietileno con hielo. Seguidamente, se midió la longitud total (máxima medida desde el eje anterior-posterior), altura y diámetro utilizando un vernier de 0.05 mm de precisión y pesadas registrando su peso total. Las pianguas fueron divididas en tres grupos de 15 unidades, cada uno almacenado a diferentes temperaturas: hielo (2°C), refrigeración (8°C) y temperatura ambiente (25°C). Para estimar el estado inicial de las muestras en cuanto a frescura (tiempo 0), se sacrificaron cinco ejemplares y se separó la carne de la concha manualmente haciendo un corte en el musculo aductor con un cuchillo estéril.
Después del análisis sensorial, la muestra se homogenizó y fue sometida a los análisis químicos. A lo largo del periodo de almacenamiento se tomaron tres ejemplares de cada temperatura de almacenamiento para hacer la evaluación sensorial y aplicarles las pruebas químicas para determinar su vida útil y los cambios en la frescura, entre estas el de valor K y pH. Es importante mencionar que este estudio se realizó con las mismas muestras usadas en el apartado anterior para determinar el tiempo estimado de vida.

En ese sentido, para determinar la vida útil una vez que se dio el deceso o muerte de los organismos a las diferentes temperaturas, se procedió de la siguiente forma: Para las muestras a 2 y 8 ºC se tomaron 3 ejemplares cada 48 horas y las muestras a 25 ºC, 3 ejemplares cada 24 horas. Se les aplicó análisis sensorial, método del Índice de Calidad QIM mediante la tabla de evaluación del anexo 01, para posteriormente procesarlas según protocolo para preparación de muestras, utilizadas en la determinación de frescura mediante Valor K y pH (estas metodologías se describirán más a fondo en este capítulo y en capítulos posteriores). Estos análisis se realizaran por duplicado. El protocolo de análisis para el método de valor K por cromatografía de intercambio iónico se encuentra en el anexo 15.

2. Análisis sensorial mediante método de índice de calidad (QIM)

El análisis sensorial consiste en determinar por medio de los sentidos (vista, tacto y olor) el estado cambiante de fresco a no fresco por el cual pasa el producto al estar almacenado a una determinada temperatura. Para esto se utiliza la hoja de evaluación sensorial del anexo 01. El análisis sensorial fue realizado por un equipo de tres panelistas entrenados, para lo cual se elaboró un esquema Quality Index Method o método del índice de calidad (QIM) especialmente diseñado para la especie citada y basada en aspectos de estado de las valvas, líquido intervalvar, olor, musculo y pie (anexo 01).
3. **Determinación de pH muscular**

El pH se determinó homogenizando con homogenizador CAT, modelo X520 1g de carne en 1 ml de agua destilada. El pH se midió usando un pH-Metro digital (marca Thermo, modelo Orion 3 Star). Para la medición se sumerge el sensor del aparato en la pasta de carne de la muestra previamente homogenizada. La lectura se realizó por triplicado y se confirmó con papel pH.

4. **Análisis de valor K**

La determinación de compuestos relacionados con el ATP se realizó según el método propuesto por Kawashima & Yamanaka (1992) con las siguientes modificaciones: para el análisis, primero se hizo un extracto de los nucleótidos presentes en la carne, 1 g de musculo fue homogenizado en frío con 5 ml de ácido perclórico al 10%. El homogenizado obtenido fue centrifugado a 3500 rpm por 5 minutos con centrifuga marca Hermle Labnet modelo z383 K; se separó el sobrenadante y se ajustó a un pH de 6.5 con KOH 10M midiendo constantemente con papel especial de pH. El precipitado formado se separó centrifugando a 3500 rpm por 5 min. Finalmente se tomó el sobrenadante y se aforó a 10 ml con KOH al 5 % y pH 6.4. Finalmente se almacena a menos 30 ºC para su posterior análisis.

El análisis de valor K consiste en una cromatografía de intercambio iónico, tanto el ATP como sus compuestos de degradación (fosforilados y no fosforilados) presentes en el extracto de la muestra, son separados mediante una columna cromatografía empacada con una resina de intercambio aniónico, generándose diferentes interacciones iónicas entre la resina y estos compuestos. Se utilizó una columna cromatográfica de intercambio iónico y una solución de HCl 0.001M (eluente A) para extraer la adenosina trifosfato (ATP), adenosina difosfato (ADP), adenosina monofosfato (AMP) e inosina
monofosfato (IMP). La inosina (HxR) e hipoxantina (Hx) se extraerán con solución de HCl 0.01M+NaCl 0.6M. Ambas soluciones fueron recogidas en volúmenes de 4ml con ayuda de un fraccionador Advantec CHF121SA y monitoreados midiendo la absorbancia a 254 nm de los fosforilados y no fosforilados mediante un espectrofotómetro UV marca Shimadzu modelo UV Mini 1240, esto para obtener su concentración en nmol/ml, según ecuación de la recta estándar diferente para cada solución de HCl (figura 8). El % de valor K se utilizará como índice de frescura acorde con Saito et al. (1959), mediante la ecuación:

\[
\text{Valor K (\%)} = \frac{(HxR + Hx)}{(ATP + ADP + AMP + IMP) + (HxR + Hx)} \times 100
\]

Figura 8. Análisis de Valor K por método de cromatografía de intercambio iónico

La significación (p <0,05) de las variables estudiadas se evaluó mediante un análisis unidireccional de varianza (ANOVA). Una regresión lineal en función del tiempo análisis se realizó sobre los resultados obtenidos para
los tres tipos de análisis. Coeficientes de correlación de Pearson se calcularon para estudiar la relación entre los métodos de frescura y sensoriales el tiempo de almacenamiento en hielo. El análisis estadístico de los datos se calculó utilizando el paquete estadístico Statgraphics Centurion XV.

B. Resultados y discusión

Los datos de la evaluación sensorial de la piangua almacenadas a diferentes temperaturas se presentan en la figura 9. Conforme va aumentando las horas de almacenamiento se aumenta el valor QIM (método de índice de calidad), esto ya que se suman los puntos resultantes de la evaluación sensorial (anexo 01).

A mayor valor QIM menor será la calidad en cuanto a frescura sensorial (apariencia, olor, dureza y sabor), por lo tanto como se observa en la figura a mayor hora de almacenamiento mayor valor QIM, el cual es proporcional a la temperatura de almacenamiento, a mayor temperatura mayor será el grado de avance de la perdida de frescura, alcanzando un valor QIM máximo en un menor tiempo.

Este índice, mostró un valor inicial de 0 propio de pianguas completamente frescas y llegó a una puntuación de 14 a los 5 días de almacenamiento a temperatura ambiente. Los ejemplares almacenados bajo las otras condiciones de almacenamiento alcanzaron una puntuación máxima cercana a 10 al décimo día de almacenamiento.

El QIM en *A. tuberculosa* almacenadas en hielo y refrigeración aumentaron linealmente ajustándose a los siguientes modelos de regresión
respectivamente: \(QIM = 1.50316 + 0.91193 \times \text{días en hielo} \quad R^2 = 82.61; \quad P < 0.05, \)
\(QIM = 2.01882 + 0.942201 \times \text{días en refrigeración} \quad R^2 = 85.921; \quad P < 0.05. \)
Esta relación no se encontró para los ejemplares almacenados a temperatura ambiente.

Figura 9. Cambios sensoriales según Índice de Calidad (QI) de las muestras de piangua *A. tuberculosa*, almacenada a diferentes temperaturas

Los cambios de pH resultado de este estudio se muestran en la figura 10. Conforme avanzan las horas de almacenamiento se aprecia irregularidades de subir y bajar el pH para las tres temperaturas de almacenamiento. La tendencia que se observa es la de alcanzar un pH menor (ácido) a mayor hora de almacenamiento, esto puede ser debido a la generación de ácido láctico en el musculo de la carne al no darse más el proceso de glucolisis después de la muerte de la piangua, más sin embargo el avance de la descomposición microbiana genera un medio básico.

Los valores de este índice permanecieron relativamente constantes a lo largo del tiempo de almacenamiento. El pH al inicio del estudio fue de 6.22 y decreció a 6.14 en el quinto día de almacenamiento a temperatura ambiente, 5.84 al segundo día en hielo y 6.05 al cuarto día en refrigeración. Estos resultados no fueron significantes \((P>0.05)\) durante el almacenamiento.
Según la escala de pH para determinar la frescura en moluscos (ostras) propuesta por Pottinger (1948): pH 6.2-5.9, bueno; pH 5.8, rechazada; pH 5.7-5.5, rancio y pH ≤ 5.2, ácido o pútrido, las pianguas en este estudio se consideran buenas hasta por cinco y diez días almacenadas a temperatura ambiente y refrigeración respectivamente.

Las muestras almacenadas en hielo se rechazan a partir del segundo día. Un intento de correlacionar cambios en el pH con la calidad sensorial de las pianguas no fue exitoso. Resultados similares han sido reportados por Erkan (2005). Niveles bajos en el pH (5.9) considerado como punto de rechazo, también han sido reportados para mejillones (Hardy 1991).

Figura 10. Cambios en el pH de la carne de piangua A. tuberculosa almacenada a diferentes temperaturas

En cuanto al método de valor K por medición del ATP y sus compuestos de degradación se dice que en el periodo post-morten, el ATP se descompone rápidamente, como consecuencia del agotamiento producto de las contracciones musculares intensas, lo que conduce a la formación de ADP,
AMP e IMP. Producto de la degradación del IMP se forman HxR e Hx. Saito et al. (1959) establecieron una técnica para la determinación cuantitativa de los derivados del ATP y definieron el valor K como un índice de calidad para los productos pesqueros. Huss (1998) apunta que el porcentaje de valor K es una relación de las concentraciones de Hx y HxR con respecto al ATP y el resto de sus compuestos de degradación. De esta proporción, se deduce que cuanto menor sea el valor K, mayor será el grado de frescura del producto alimenticio marino.

Como se aprecia en la figura 11 a mayor temperatura de almacenamiento mayor será la velocidad de descomposición, presentando un valor máximo al segundo día de almacenamiento, 68 % para el tratamiento a temperatura ambiente. Mientras que a temperaturas menores como al estar en hielo y refrigeración, se mantiene una mayor vida útil del producto alimenticio. Para el almacenamiento en hielo a los 10 días el valor K presento un valor de 30 %, valor relativamente bajo, mientras que en refrigeración fue de 42 %, considerándose ya no acto para el consumo en estado crudo en ambos casos.

Según Ehira, et al. (1986) y Okuma, et al. (1992), un valor K menor de 20% en productos pesqueros implica un alto grado de frescura, mientras que entre 20-40% para productos moderadamente fresco y por encima de 40 %, para pescado no fresco, no apto para el consumo humano. Este índice de frescura depende de factores tales como: especie, arte de pesca y tratamiento post-captura.
Figura 11. Cambios en el % Valor K de la carne de piangua A. *tuberculosa* almacenada a diferentes temperaturas

V. Otras actividades realizadas

A. Rendición de cuentas 2009

Como parte del proyecto de Regionalización Interuniversitaria del Pacífico Central se realizó la rendición de cuentas 2009, la cual se realizó en la Casa de la Cultura de Puntarenas el día 26 de febrero del año 2010. En este evento como parte de las actividades que se realizaron, fueron las de montar y acomodar un “stand informativo” en compañía de las MIPYMES: Asociación de Mujeres de Punta Morales (ASOMUPUMO) y Asociación de Proyectos Pesqueros de Costa de Pájaros (APROPESA), dedicadas al cultivo y producción de ostras *Crassostrea gigas*, las cuales mostraron y comercializaron su producto a los visitantes.
B. Elaboración de Brochures

Días previos al evento anterior se realizó un Banner y Brochures informativos (anexo 09 y 10), estos últimos con respecto al objetivo específico, metas alcanzadas y actividades que se han realizado para con las MIPYMES en cuanto al control de calidad (frescura e inocuidad) para el periodo 2009-2010, las cuales han sido talleres que llevan como objetivo “Diseñar y capacitar a las MIPYMES en el equipo e infraestructura básica para la conservación de la frescura e inocuidad del producto” con lo cual se quiere que las MIPYMES conozcan e implementen prácticas fáciles para ofertar productos acuícolas inocuos y con altos niveles de calidad al consumidor. En cuanto a la meta alcanzada se indica en el brochure que se capacitaron a las MIPYMES sobre las recomendaciones básicas para la conservación de la frescura e inocuidad, la manipulación y presentación de producto final de los productos pesqueros y de cultivo.

Las MIPYMES impactadas son:

- Asociación de Mujeres de Punta Morales (ASOMUPUMO)
- Asociación de Proyectos Pesqueros de Costa de Pájaros (APROPESA)
- Asociación de Mujeres Trabajadoras del Marisco de Chomes (ASOMUTRAMA)
- Asociación de pescadores Puerto Palito, Isla Chira (ASOPECUPACHI)
- Asociación de Pesca y Cultivo de Isla Venado.

Actividades que se llevaron a cabo durante el periodo 2009 indicadas en el brochure:

Se realizaron cuatro talleres en total:
- Uno sobre “Conservación de la frescura en productos pesqueros y de cultivo”
- Dos sobre “Deterioro post captura de los productos pesqueros y buenas prácticas en el cultivo de moluscos bivalvos”
- Uno sobre “Deterioro post captura de los productos pesqueros”.

Impactando las 5 MIPYMES del Golfo de Nicoya anteriormente citadas. Para cada taller se elaboró, editó e imprimió un Manual para los participantes, “Deterioro post captura de los productos pesqueros y buenas prácticas en el cultivo de moluscos bivalvos”, el cual se encuentra completo en el anexo 17.

Todo esto se lleva a cabo bajo la iniciativa de incrementar la competitividad de las MIPYMES del pacífico central mediante un plan de fortalecimiento interuniversitario regional.

C. Taller de análisis de trabajo 2009 y planeación de intervención 2010, UCR-UNA-ITCR

El 4 de marzo del año 2010 se realizó en el auditorio de la Estación de Biología Marina de la Universidad Nacional el taller de equipo de trabajo UCR-UNA-ITCR, en el cual se presentaron los objetivos, las tareas realizadas, resultados de diagnóstico obtenidos al 2009, las actividades, plan de trabajo y metas para el año 2010.

Entre los objetivos que se plantearon esta como objetivo general: “Incrementar la competitividad de las MIPYMES de la Región Pacífico Central mediante un esfuerzo interuniversitario articulado”. Como objetivo específico: “Desarrollar prácticas para incrementar el valor agregado de los productos
marinos que comercializan los MIPYMES meta, así como los servicios que puedan ofrecer algunas de estas MIPYMES”.

Dentro de las actividades que se mencionaron destacan las de: Talleres de sensibilización (que ya se han llevado a cabo), Validación de las temáticas transferidas mediante análisis de muestras (evaluación de producto), acompañado de visitas de seguimiento y fortalecimiento, taller prácticas para incrementar el valor agregado y desarrollo de nuevos productos.

Por último se llegó a la creación de un plan de intervención y metas esperadas en conjunto UCR-UNA-ITCR para el año 2010, las cuales se indican en el cuadro 6.

CUADRO 6.
Plan de Intervención y Metas Esperadas 2010

<table>
<thead>
<tr>
<th>Debilidad</th>
<th>Propuesta</th>
<th>Meta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falta de comunicación y articulación del equipo</td>
<td>Creación de comisiones de trabajo (investigación, acción)</td>
<td>Definir puntos de encuentro y la articulación de los mismos.</td>
</tr>
<tr>
<td></td>
<td>Definir tipo de certificación sobre el producto y el proceso a implementar en las MIPYMES y las unidades de las universidades.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creación de equipo de trabajo UNA (inocuidad, toxinas y frescura) con el ITCR.</td>
<td>Crear una comunidad virtual</td>
</tr>
<tr>
<td></td>
<td>Visita diagnostico a las MIPYMES beneficiadas</td>
<td>Estandarización de las temáticas</td>
</tr>
<tr>
<td></td>
<td>Diseño de una herramienta de diagnóstico e intervención</td>
<td>Calendarización de las visitas</td>
</tr>
</tbody>
</table>

| Resolver el problema de laboratorio de la ECMAR | Gestión de diseño y financiamiento | Contar con el diseño e infraestructura laboratorio |

D. Cotización de insumos

Se realizaron varias cotizaciones de materiales y equipo necesarios para implementar las actividades y alcanzar los objetivos propuestos en el año 2010.
1. Máquina de empaque al vacío

Entre los insumos que se adquirieron se encuentra una máquina de empaque al vacío, la cual forma parte del objetivo de desarrollar prácticas para incrementar el valor agregado de los productos de pesca y acuacultura mediante el desarrollo de productos empacados al vacío. El empacado al vacío es el proceso por el cual primero se extrae el aire de un recipiente. Dentro de los beneficios que se obtienen con el empaque al vacío se dice que: los alimentos empacados al vacío mantienen su frescura y sabor de 3 a 5 veces más tiempo que con los métodos convencionales, los alimentos frescos mantienen su textura y apariencia natural, en ausencia de oxígeno, las bacterias y microorganismos no crecen y ni se reproducen, lo que desacelera la descomposición de los alimentos.

Para la adecuada escogencia del equipo de vacío que se adquirió, se programaron dos visitas de un representante de ventas de la empresa de variedades plásticas y empacadoras al vacío Ruxi, S.A. En cada una de estas visitas (figura 12) se mostró una máquina de características diferentes las cuales se especifican en el anexo 02.

Figura 12. Demostración de una máquina selladora de vacío por empresa Ruxi, S.A.
E. Reunión UNA-ITCR, elaboración de manuales de procedimientos para los laboratorios de Control de calidad y Microbiología y conocer el formato sobre las Normas ISO.

El 7 de abril del año 2010 se llevó a cabo una reunión en la sala de sesiones de la Estación de Biología Marina de la Universidad Nacional, en la cual estuvieron presentes Oscar Córdoba (ITCR), Luis Vega (UNA) y mi persona Fabián Chavarría (UNA), está con el motivo de conocer el formato sobre las Normas ISO y los manuales de procedimientos que hay que elaborar y seguir punto por punto.

Dentro de los alcances que se lograron en la reunión:

- El M.BA. Oscar Córdoba brindó información y ejemplos sobre el formato de las normas ISO.
- Se discutió sobre los procedimientos necesarios para generar un documento sobre el aseguramiento de la calidad de los productos pesqueros, con el fin de lograr una certificación de los productos que ofrecen las MIPYMES impactadas por el Proyecto sobre Incremento en la competitividad de las MIPYMES de la Región Pacífico Central, con el objetivo de lograr un valor agregado a sus productos.
- Se plantea la necesidad de coordinar e incorporar en esta iniciativa a las instituciones reguladoras de los productos pesqueros, como por ejemplo: INCOPESCA, MAG, SENASA, MS.
- Se considera relevante iniciar la descripción y documentación, con el formato ISO, de los análisis realizados por los laboratorios de Microbiología Marina y Control de Calidad (EBM-ECB-UNA) para el aseguramiento de la calidad de los productos pesqueros que ofrecen las MIPYMES impactadas.
- Es necesario establecer la norma sobre los procedimientos que ejecutan cada una de las MIPYMES impactadas, para asegurar la calidad de los productos que ofertan.
- Se justifica buscar recursos para contratar personal calificado para el desarrollo de esta iniciativa.

F. Búsqueda y recopilación de información sobre métodos de comercialización y valor agregado que puedan ser implementadas por las MIPYMES a largo plazo.

Se realizó una búsqueda bibliográfica de información con respecto al valor agregado y los diferentes tipos de comercialización que se le da a los productos alimenticios de pescado y mariscos tanto pesquero como acuícola, para que puedan ser incorporados al mercado por parte de los pescadores y productores, dándole un mayor valor agregado a sus productos como una de las iniciativas de fortalecer y brindar apoyo a las MIPYMES por parte del equipo de trabajo mediante talleres de capacitación.

Cabe mencionar que el valor agregado se define como: “el valor que un determinado proceso productivo adiciona al ya plasmado en la materia prima y el capital fijo (bienes intermedios), es una característica o servicio extra que se le da a un producto o servicio, con el fin de darle un mayor valor comercial, generalmente se trata de una característica o servicio poco común, o poco usado por los competidores, y que le da al negocio o empresa, cierta diferenciación.”

Dentro de la información más relevante encontrada sobre el tema y que se usó ampliamente en talleres de capacitación están:

- Que es el valor agregado
- Introducción al valor agregado
- Como agregar valor a los productos
- Productos con valor agregado
- Análisis del valor agregado
- Tendencias en consumo de alimentos
- Ventajas del valor agregado
- Formas de adicionar valor agregado
- Algunos ejemplos de adición de valor

Esta recopilación de información se realizó con el propósito de poder llevar a cabo un taller sobre el tema en cuestión, dirigido a las MIPYMES meta participantes en el proyecto, la cual debido al retraso en la adquisición del equipo maquina selladora de vacío no se pudo realizar en el año 2010, por lo que esta actividad se llevó a cabo en el año 2011 y se encuentra en el siguiente capítulo.

G. Taller de iniciativas MIPYMES

El 29 de julio del año 2010 se realizó en el auditorio de la Estación de Biología Marina de la Universidad Nacional el taller de iniciativas MIPYMES (figura 13), en el cual se presentaron lecciones aprendidas en el periodo del primer semestre 2010, la evaluación de los alcances según las actividades propuestas en el primer taller 2010 y las necesidades detectadas en las MIPYMES prioritarias de resolver.

Se llegó a la recomendación de crear una actividad que se consideró pertinente desde el primer taller, y que se reafirma en este segundo taller, la cual consiste en la determinación del tiempo estimado de vida en moluscos (ostra y piangua), para conocer cuánto tiempo duran vivas una vez que son retiradas de su medio, y colocadas a tres diferentes temperaturas. Por último
la determinación del tiempo de vida útil para el consumo mediante análisis de frescura. Esto surge al verse necesario para una adecuada comercialización y como un valor agregado más. Se piensa a futuro en un posible logo de calidad para el producto, que indique un producto más fresco.

Figura 13. Presentación de la evaluación de los alcances según actividades propuestas

H. Encuentro para la socialización de iniciativas interuniversitarias de desarrollo regional en el marco de CONARE, Regionalización

Como parte de las actividades extracurriculares el 7 de agosto del año 2010, se llevó a cabo en el Museo de Cultura Popular de la Universidad Nacional, Heredia, el encuentro para la socialización de iniciativas interuniversitarias de desarrollo regional en el marco de CONARE, Regionalización (figura 14), el cual tuvo como objetivo general socializar las iniciativas interuniversitarias de desarrollo regional (IIDR) 2010 con fondos CONARE Regionalización en las cuales participa la Universidad Nacional de Costa Rica. En el mismo se dio la participación con la exposición de la iniciativa correspondiente al Valor Agregado en productos de pesca y cultivo que pueden ser aplicadas a mediano y largo plazo por la MIPYMES en sus productos para mejorar sus ingresos económicos.
Dentro de los productos que se obtuvieron con este encuentro de socialización están que los docentes de la UNA conocieron las IIDR que se desarrollan en las diferentes regiones del país y que la Dirección de Docencia adquirió una visión integrada sobre la ejecución de CONARE Regionalización.

Figura 14. Presentación de la iniciativa Valor Agregado
VI. Conclusiones

Los resultados indican claramente que los compuestos bioquímicos de la piangua *A. Tuberculosa* varían mensualmente y que gran parte de esto puede estar relacionado con el ciclo reproductivo.

En base a los resultados se puede aseverar que el contenido proteico de la piangua es inversamente proporcional a la humedad. Después de la humedad el porcentaje de proteínas fue el segundo componente más abundante con un máximo y un mínimo para los meses de agosto y noviembre respectivamente. Por su parte, al valor calórico se mantuvo relativamente constante a través del año de estudio presento un máximo y mínimo en estos mismos meses de octubre y diciembre.

La temperatura a la que mayor tiempo dura la piangua *A. tuberculosa* estando viva, es a temperatura ambiente de 25 °C. Le sigue el almacenamiento en hielo y la temperatura a la que menos duraron según ensayos realizados fue a la temperatura de refrigeración a 8 °C, tendieron a presentar menor resistencia muriendo más rápido presentando promedios de 48,9, 44,0 y 23,3 horas respectivamente.

El hielo fue el medio de almacenamiento más adecuado para conservar la piangua por mayor tiempo de vida útil resultando apta para el consumo humano hasta el día 10 del almacenamiento, según los resultados obtenidos mediante QIM y valor K. A mayor temperatura de almacenamiento mayor será la velocidad de descomposición, presentando un valor máximo de valor K al segundo día de almacenamiento, 68 % para el tratamiento a temperatura ambiente. Mientras que a temperaturas menores como al estar en hielo y refrigeración, se mantiene una mayor vida útil del producto alimenticio.
Capítulo 2

Actividades de investigación y extensión realizadas en el año 2011

I. Productos empacados al vacío.

Se empaaron al vacío diferentes productos pesqueros y acuícolas como parte de las actividades destinadas a dar valor agregado a este tipo de alimentos. Entre los productos empacados están: filete de pescado (mano de piedra y corvina reina), camarón, almejas y calamar (figura 15).

Figura 15. Productos empacados al vacío.

Posteriormente, se comprobó la efectividad del empaque al vacío de algunos de estos productos mediante diferentes análisis de frescura como los descritos en el capítulo anterior.
II. Análisis de frescura y vida útil en filetes de Mano de piedra *Centropomus unionensis* empacados al vacío.

A. Metodología

1. Colecta y tratamiento de la muestra
Muestras de mano de piedra *C. unionensis* fueron compradas al pescador al momento de su captura, en la zona de cercana a Tárcoles, seguidamente fueron puestos en hielo y traídos al laboratorio. Posteriormente ya en el laboratorio fueron fileteados, cada filete fue empacado al vacío y sellado con máquina marca Brother, modelo DZ0400 N/B y almacenados en hielo. El tiempo sometido al vacío de 1 KPa antes de sellar la bolsa fue 30 segundos. Uno de los filetes se procesa inmediatamente mediante extracción para determinar frescura al tiempo cero según protocolo de análisis de valor K descrito en el capítulo anterior. Los demás son almacenados en hielo y muestreados al azar cada 3 días aproximadamente. En la figura 16 se presenta el empaque de vacío aplicado a las muestras de mano de piedra.

![Figura 16. Empaque al vacío de las muestras de mano de piedra C. unionensis.](image-url)
2. Análisis de la muestra

Se hace un extracto de los nucleótidos presentes en la carne utilizando ácido perclórico al 10 %, se centrifuga en frío con centrífuga marca Hermle Labnet modelo z383 K y posteriormente se regula a pH 7 con solución de hidróxido de potasio KOH al 10 %, midiendo constantemente con papel especial de pH. Los extractos neutralizados se almacena a - 30 ºC para su posterior análisis. En la figura 17 se presenta el extracto de los nucleótidos presentes en la muestra de carne.

Figura 17. Extracción de nucleótidos en muestras de mano de piedra C. unionensis para el análisis de Valor K.

B. Resultados y discusión

Los datos del análisis de frescura por método de valor K en mano de piedra C. unionensis fileteada y empacada al vacío se presentan en la figura 18. Como se puede apreciar, conforme van transcurriendo los días de almacenamiento en hielo va aumentando el porcentaje de valor K presente en la carne de pescado. Entre mayor sea este porcentaje mayor será la
pérdida de frescura y el grado de deterioro, esto es debido al avance de la pérdida de fosfato en el nucleótido del ATP presente en el músculo.

Se observa que a los 20 días de almacenamiento se presenta el mayor porcentaje de valor K (54.13 %), valor por encima del máximo de valor K promedio considerado no apto para consumo cocido el cual es 40 %. Según este resultado el máximo de tiempo para ser consumido fue el día 17, obteniéndose un valor K cercano al 30 %. Entre los días 3 al 10 los valores obtenidos permanecen muy constantes promediando el 20 %, valor máximo permitido para que el pescado sea consumido en estado crudo sin que sea perjudicial a la salud.

Con estos resultados obtenidos se puede apreciar un beneficio en el mantenimiento de la frescura del producto pesquero debido al empaque al vacío, técnica utilizada para además de incrementar la vida útil también incrementar el valor agregado en la comercialización al darle una apariencia física agradable a los consumidores.

Figura 18. Resultados del análisis de valor K realizado a filetes de mano de piedra C. unionensis empacados al vacío y almacenados en hielo por 20 días. (n=1)
III. Análisis de frescura y vida útil en filetes de Corvina reina *Cynoscion albus* empacados al vacío.

A. Metodología

1. **Colecta y tratamiento de la muestra**

Con el objetivo de continuar con el análisis de frescura en filetes de pescado empacado al vacío, se trabajó con la especie corvina reina *Cynoscion albus*. Se consiguieron de la zona de Puerto Palito en Isla Chira, 7 ejemplares de 1,5 Kg aproximadamente pescada a la cuerda, recientemente pescadas e inmediatamente eviscerada por el pescador. Los ejemplares se llevaron al laboratorio en las mejores condiciones de inocuidad y manteniendo una baja temperatura mediante una hielera con hielo en escarcha.

En el laboratorio se fileteo y se empaquetó al vacío en presentaciones de dos filetes por bolsa con una máquina selladora de vacío marca Brother, modelo DZ0400 N/B. El tiempo sometido al vacío de 1 KPa antes de sellar la bolsa fue 30 segundos. En la figura 19 se presenta el empaque de vacío aplicado a las muestras de corvina. Uno de los filetes se analizó inmediatamente para determinar frescura al tiempo cero. Los filetes empacados se almacenaron en hielo, donde posteriormente cada cuatro días se sacaron dos bolsas y se les aplicó los métodos para determinar frescura a un tiempo determinado de almacenamiento en hielo.
2. **Análisis sensorial mediante método de índice de calidad (QIM)**

El análisis sensorial consiste en determinar por medio de los sentidos (vista, tacto y olor) el estado cambiante de fresco a no fresco por el cual pasa el producto al estar almacenado a una determinada temperatura. Esta metodología ya fue explicada en el capítulo anterior. Para esta especie de pescado se utiliza la hoja de evaluación sensorial del anexo 03.

3. **Método Torrymetro (TM)**

La medición de frescura se realiza directamente sobre el filete utilizando un instrumento especial que funciona por medio de impulsos eléctricos el cual se basa en la dureza del musculo, llamado Torrymetro. Dos muestras son sacadas de la hielera y del empaque de vacío, posteriormente son medidas con el instrumento en cinco partes diferentes sobre el filete, se escogen los tres datos más cercanos entre sí, y se promedia. En la figura 20 se presenta la medición realizada a los filetes con el instrumento especial para medir frescura.
4. **Análisis de valor K**

Para el análisis se siguió la misma metodología descrita en el capítulo 2. En la figura 21 se presenta la extracción de los nucleótidos de la muestra de carne.

Figura 20. Medición de frescura con Torrymetro.

Figura 21. Extracción de nucleótidos en muestras de corvina reina *C. albus* para el análisis de valor K.
B. Resultados y discusión

1. Análisis sensorial mediante método de índice de calidad (QIM)

Los parámetros y características mencionadas a lo largo del almacenamiento fueron incluidos en el esquema QIM propuesto para los filetes de corvina reina (anexo 03). El índice de calidad (QI) máximo asignado por este esquema se estableció en 14. Los cambios del QI en el almacenamiento en hielo durante 39 días se muestran en la Figura 22.

Este índice mostró un valor inicial de 0.0 ± 0.0 propio de un producto completamente fresco y alcanzó a una puntuación de 9.7 ± 2.1 a los 39 días de almacenamiento en hielo, donde los ejemplares evaluados mostraron signos indiscutibles de deterioro en todas las características evaluadas.

Los filetes de *C. albus* con un QI por encima de 5 fueron considerados inaceptables por los evaluadores, dicho valor se alcanzó al día 21 de almacenamiento en hielo (figura 22), estableciéndose los 21 días como límite de rechazo para no ser apta para el consumo. Este último resultado es similares a los reportados por Lougovois *et al.* (2003) para la vida útil de la dorada (*Sparus aurata*) almacenada en hielo.

El QIM en filetes de *C. albus* empacados al vacío y almacenadas en hielo aumentaron linealmente, ajustándose a los siguientes modelos de regresión: $QI = 0.9318 \times + 1.0455$, $R^2 = 0.9149$, $P<0.05$ (con $x =$ días de almacenamiento en hielo). Este método presentó una buena correlación positiva con el tiempo de almacenamiento, ($Pearson, r = 0.90, P< 0.05$), hecho que demuestra su utilidad para poder establecer el tiempo remanente de vida útil del producto pesquero.
Figura 22. Cambios sensoriales según Índice de Calidad (QI) realizado a filetes de corvina reina *C. albus* empacados al vacío y almacenados en hielo por 39 días (*n=2*).

2. **Método Torrymetro (TM)**

Los cambios en las propiedades dieléctricas del músculo del producto pesquero están estrechamente relacionados con las tasas de deterioro y se utilizan como indicadores de calidad. Los resultados que se obtuvieron por medio del GR Torrymeter aparecen en la Figura 23. La tendencia de la gráfica es de decrecen conforme transcurren los días de almacenamiento en hielo.

Para los filetes de corvinas reina empacados al vacío las lecturas promedio del Torrymetro oscilaron en un ámbito de 12.5 ± 0.7 para el pescado fresco con 4 días de almacenamiento en hielo y 6.1 ± 0.1 para el pescado inaceptable, luego de 39 días de almacenamiento en hielo. Una lectura de Torrymetro con valores igual o mayores a 11 son indicativos de un producto muy fresco, mientras que un valor de 6.0 es indicativo de la presencia de un marcado deterioro, con una mala calidad y considerados no aptos para el consumo (Lougovois *et al.*, 2003).
Los filetes de *C. albus* alcanzaron valores de 6.6 ± 0.9 a los 21 días de almacenamiento en hielo (figura 23), estableciéndose los 21 días como límite de rechazo. Resultados similares de vida útil en el almacenamiento en hielo han sido reportados por Lougovois *et al.* (2003) y Jiménez (1981) para la dorada y la corvina aguada respectivamente. Estos resultados concuerdan con los cambios sensoriales vistos mediante el método QIM, presentando además, una elevada correlación negativa entre los valores del torrymetro y el índice de calidad QI (Pearson, $r = -0.94$, $P < 0.05$).

![Figura 23. Cambios en los valores del Torrymetro según la resistencia dieléctrica de los filetes de corvina reina *C. albus* empacados al vacío y almacenados en hielo por 39 días. (n=2)](image)

3. Cambios en el índice de frescura valor K

Como se observa en la figura 24, el valor K mostró un incremento lineal respecto al tiempo de almacenamiento, en los filetes de corvina reina empacados al vacío se dio un valor inicial de $3.74 \pm 0.39\%$ hasta un valor de $91.64 \pm 1.07\%$ a los 39 días de almacenamiento en hielo. Como se puede
apreciar, conforme van transcurriendo los días de almacenamiento en hielo va aumentando el porcentaje de valor K presente en la carne de pescado. Entre mayor sea este porcentaje mayor será la pérdida de frescura y el grado de deterioro, esto es debido al avance de la pérdida de fosfato en el nucleótido del ATP presente en el músculo.

El modelo de regresión lineal para el valor K en filetes de C. albus fue: % K = 5.83 x - 6.47 R² = 0.91, P < 0.05 (con x= días en hielo). En el presente estudio, se observó un aumento significativo en este índice durante el tiempo de almacenamiento en hielo, presentando una alta correlación (Pearson, r= 0.95, P<0.05). En base a estas correlaciones el valor K ha demostrado ser uno de los indicadores de calidad más adecuados para determinar el grado de frescura en el pescado.

Según Ehira, et al. (1986) y Okuma, et al. (1992), un valor K menor de 20% en productos pesqueros implica un alto grado de frescura, mientras que entre 20-40% para productos moderadamente fresco y por encima de 40 %, para pescado no fresco, no apto para el consumo humano. Este índice de frescura depende de factores tales como: especie, arte de pesca y tratamiento post-captura.

De acuerdo a estos límites propuestos, se puede observar en la figura 24 que la frescura de los filetes de C. albus empacados al vacío y almacenados en hielo se mantiene óptimos los primeros días, considerándose como muy fresco y de excelente calidad hasta el día 14 de almacenamiento (27.90 ± 7.21%), considerada como no aceptable para el consumo crudo (Okuma et al., 1992). disminuyendo gradualmente, considerándose moderadamente fresco y posteriormente, de baja calidad para el día 21 de almacenamiento (34.77 ± 5.85%), considerándose en estado inaceptable a tal punto que no deben consumirse ni procesarse por efectos de seguridad alimentaria.
Estos resultados en el valor K son análogos a los obtenidos por los otros dos métodos para determinar la frescura; índice de calidad y torrymetro.

![Graph showing changes in % value K for filetes of queen corvina C. albus packed in vacuum and stored in ice for 39 days. (n=2)]

Figura 24. Cambios en el % de valor K, realizado a filetes de corvina reina C. albus empacados al vacío y almacenados en hielo por 39 días. (n=2)

IV. Análisis de la composición nutricional de ostra, Crassostrea gigas, zona Punta Morales/Costa de Pájaros

A. Metodología

1. **Colecta y tratamiento de la muestra**

Para la determinación de la composición nutricional en ostra se utilizaron mensualmente 30 unidades por lote de ostra C. gigas las cuales se dividieron en tres grupos de 10 ejemplares cada uno. El muestreo comenzó a partir de agosto del 2010. La muestra proviene de las MIPYMES Asociación de Mujeres de Punta Morales (ASOMUPUMO) y Asociación de Proyectos Pesqueros de Costa de Pájaros (APROPESA) Puntarenas, Costa Rica.
la figura 25 se presenta las muestras de ostra colectadas y traídas al laboratorio para el análisis nutricional.

Los ejemplares fueron transportados al laboratorio en donde se tomó la longitud total (máxima medida desde el eje anterior-posterior), altura y diámetro utilizando un vernier de 0.05 mm de precisión. Posteriormente las ostras fueron pesadas, registradas como peso total y peso fresco, para este último se abrieron sus conchas, se removió y drenó la carne por 10 minutos con papel adsorbente y se registró el peso fresco de la carne.

2. Análisis de la muestra

Todo el tejido fue deshidratado en un horno a 100\(^\circ\) C por 24 horas para posteriormente medir su peso seco utilizando una balanza con precisión de 0.01 g determinando así el porcentaje de humedad. El material seco de cada grupo se molió y homogenizó para determinar por duplicado proteínas, lípidos y cenizas, según la metodología de AOAC (1984) para el análisis nutricional (figura 26). Los resultados de los análisis para todo el periodo de muestreo se presentan en la figura 27 (base seca) y en el cuadro 7 (base húmeda).
B. Resultados y discusión

En el cuadro 7 se representan los resultados para las variaciones mensuales de la composición química nutricional de la porción comestible de ostra *C. gigas*. La humedad fue el componente porcentual con mayor presencia en el organismo, el cual presentó un máximo de 90.6 % en el mes de noviembre y un mínimo de 78.5± % en abril.

Por su parte, el porcentaje de proteínas fue el segundo componente más abundante con valores de 12.8 % a 4.6 para los meses de abril y noviembre respectivamente, estos resultados demuestran que el porcentaje de humedad es inversamente proporcional al porcentaje de proteína. Es importante mencionar que ambos meses son de transición; abril época seca a lluviosa y noviembre época lluviosa a seca.

En cuanto al valor calórico presentó un máximo y mínimo en estos mismos meses de abril y noviembre con valores de 115.92 y 48.20 Kcal/100g.
respectivamente, este comportamiento similar a las proteínas se debe a que el valor calórico está directamente relacionado y depende de la cantidad de proteínas y lípidos en el alimento.

En cuanto al contenido graso, es muy escaso (máximo 1.8 % y mínimo 0.8 %). En base a estos resultados se puede aseverar que el contenido proteico y el valor calórico son inversamente proporcionales a la humedad, además de que esta especie es del tipo de molusco de muy bajo contenido graso y moderado contenido proteico, lo cual lo convierte en un alimento de bajas calorías y nutritivo.

Figura 27. Composición química nutricional de la porción comestible de *C. gigas*. (Porcentaje base seca)
CUADRO 7.
Composición química nutricional de la porción comestible de *C. gigas*, zona Punta Morales/Costa de Pájaros (Base Húmeda)

<table>
<thead>
<tr>
<th>Mes-Año</th>
<th>Humedad (%)</th>
<th>Cenizas (%)</th>
<th>Lípidos (%)</th>
<th>Proteínas (%)</th>
<th>Carbohidratos (%)</th>
<th>Valor calórico (Kcal/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ago-10</td>
<td>89.8</td>
<td>0.8</td>
<td>1.5</td>
<td>5.2</td>
<td>2.6</td>
<td>53.91</td>
</tr>
<tr>
<td>Sep-10</td>
<td>80.3</td>
<td>1.3</td>
<td>2.2</td>
<td>10.0</td>
<td>6.2</td>
<td>103.97</td>
</tr>
<tr>
<td>Oct-10</td>
<td>80.2</td>
<td>1.8</td>
<td>2.6</td>
<td>10.3</td>
<td>5.1</td>
<td>105.14</td>
</tr>
<tr>
<td>Nov-10</td>
<td>90.6</td>
<td>1.2</td>
<td>1.4</td>
<td>4.6</td>
<td>2.2</td>
<td>48.20</td>
</tr>
<tr>
<td>Dic-10</td>
<td>85.4</td>
<td>1.4</td>
<td>2.3</td>
<td>7.6</td>
<td>3.2</td>
<td>79.02</td>
</tr>
<tr>
<td>Ene-11</td>
<td>86.6</td>
<td>1.3</td>
<td>1.8</td>
<td>6.7</td>
<td>3.7</td>
<td>70.78</td>
</tr>
<tr>
<td>Feb-11</td>
<td>87.7</td>
<td>1.5</td>
<td>2.3</td>
<td>5.7</td>
<td>2.7</td>
<td>65.60</td>
</tr>
<tr>
<td>Mar-11</td>
<td>80.8</td>
<td>2.1</td>
<td>1.6</td>
<td>10.3</td>
<td>5.2</td>
<td>95.68</td>
</tr>
<tr>
<td>Abr-11</td>
<td>78.5</td>
<td>1.5</td>
<td>2.4</td>
<td>12.8</td>
<td>4.9</td>
<td>115.92</td>
</tr>
<tr>
<td>May-11</td>
<td>84.6</td>
<td>1.0</td>
<td>1.8</td>
<td>8.6</td>
<td>4.0</td>
<td>82.87</td>
</tr>
<tr>
<td>Jun-11</td>
<td>83.2</td>
<td>1.2</td>
<td>2.1</td>
<td>9.0</td>
<td>4.5</td>
<td>90.25</td>
</tr>
<tr>
<td>Jul-11</td>
<td>82.8</td>
<td>1.2</td>
<td>1.8</td>
<td>9.8</td>
<td>4.3</td>
<td>91.30</td>
</tr>
</tbody>
</table>

V. Análisis de la composición nutricional de ostra, *Crassostrea gigas*, zona Punta Cuchillo/Paquera

A. Metodología

1. Colecta y tratamiento de la muestra

Para la determinación de composición nutricional en ostra se utilizan mensualmente 30 unidades por lote de ostra *C. gigas* las cuales se dividen en dos grupos de 15 ejemplares cada uno. El muestreo comenzó a partir de
febrero del 2011. La muestra proviene de las MIPYMES Familia Peralta, Ostra Rica, Punta Cuchillo/Paquera, Puntarenas, Costa Rica. En la figura 28 se presenta las muestras de ostra colectadas y traídas al laboratorio para el análisis nutricional.

Figura 28. Muestra de ostra C. gigas para análisis nutricional: A) organismo entero B) muestra procesada y almacenada para análisis

La muestra de ostra C. gigas de la zona de punta Cuchillo es tratada igual que en el caso de ostra de la zona de Punta Morales y Costa de Pájaros, descritas en la sección anterior de este capítulo.

2. **Análisis de la muestra**

El estudio de análisis de composición nutricional en esta muestra se presenta terminado en el siguiente capítulo. En la figura 29 se presentan los resultados obtenidos en los análisis hasta el momento de cierre del año 2011.
B. Resultados

![Gráfico mostrando la composición química nutricional de la porción comestible de C. gigas.](image)

Figura 29. Composición química nutricional de la porción comestible de *C. gigas*. (Porcentaje base seca)

VI. Determinación del tiempo estimado de vida y mantenimiento de la frescura de la ostra *C. gigas* a tres diferentes temperaturas.

A. Metodología

1. **Colecta y tratamiento de la muestra**

 Se utilizaron 33 unidades las cuales se dividieron en tres grupos de 10 ejemplares cada uno, un grupo se colocó en hielo (2 - 4°C), otro en refrigeradora (8°C) y el último a temperatura ambiente (25°C). Las muestras almacenadas a las diferentes temperaturas se inspeccionaron sensorialmente cada 6 horas. Como signo de referencia para saber si el animal está vivo, se verificó que las valvas estuvieran completamente cerradas y que presentaran resistencia al intentar abrirlas.
2. Análisis de la muestra

Como punto de partida para estimar el estado inicial en cuanto a frescura de las muestras, se tomaron 3 ejemplares más, para sacrificarlos y muestrearlos al tiempo cero, determinado frescura mediante análisis sensorial, método del Índice de Calidad QIM (anexo 01), además de valor K y pH. Para determinar vida útil una vez que se dio el deceso de los organismos a las diferentes temperaturas, se procede de la siguiente forma: Para las muestras a 2 y 8 ºC se tomaron 2 ejemplares cada 48 horas, las muestras a 25 ºC se utilizaron 2 ejemplares cada 24 horas. Se les aplica análisis sensorial QI, para posteriormente procesarlas según protocolo para preparación de muestras, utilizadas en la determinación de frescura mediante Valor K y pH. Estos análisis se realizaran por duplicado. Este estudio comenzó el 5 de octubre del 2011, por lo que los datos al cierre del año aun no estaban completos y se presentaran los resultados y discusión en el siguiente capítulo. En la figura 30 se presenta el tratamiento de las muestras de ostra C. gigas a las tres diferentes temperaturas.

Figura 30. Almacenamiento de las muestras de ostra C. gigas a tres diferentes temperaturas
VII. Otras actividades realizadas

A. Taller Prácticas para incrementar el valor agregado

El taller fue realizado el 26 de octubre del 2011 en Puerto Níspero, con la participación de los pescadores miembros de la Asociación de Pescadores de esta comunidad. Dicha actividad consistió en una presentación sobre la tendencia del consumo de alimentos hoy en día, el significado de valor agregado, las ventajas y características, así como ejemplos de alimentos con valor agregado, incluyendo el pescado y mariscos. Entre estos ejemplos destaco la técnica de empaque al vacío, sus beneficio e importancia para mantener la frescura de los productos pesqueros y el aumento en la vida útil de los mismos. Además se presentó lo correspondiente a los resultados obtenidos con el estudio de empaque al vacío para las especies de mano de piedra y corvina reina que se encuentran en este capítulo. Posteriormente se hizo una explicación del uso de la máquina empacadora de vacío y los participantes procedieron a practicar con pescado y camarón, se les habló sobre las ventajas y desventajas, dejando claro que el empaque no sustituye la refrigeración. Se les mostró el Torrymetro (instrumento para medir frescura) y se practicó con el mismo (figura 31).
Figura 31. Taller prácticas para incrementar el valor agregado, realizado en Puerto Níspero.

B. Diseño de una embarcación para el mantenimiento y transporte del producto en óptimas condiciones

Las embarcaciones utilizadas durante la captura y transporte de los productos pesqueros deben estar diseñadas y construidas de manera tal que faciliten la manipulación del pescado a bordo, además de preservarlo de cualquier fuente de contaminación y de las inclemencias del tiempo.

Por lo tanto, una embarcación correctamente diseñada, construida y bien equipada tienen que estar concebidas para:

- Permitir proteger el pescado del sol y del viento para que no se caliente ni se reseque.
• Impedir que el pescado se pueda contaminar, especialmente por la contaminación procedente de:
 • Las aguas residuales de la limpieza del pescado o del barco,
 • El humo, el aceite, la grasa, el carburante, etc. del propio barco.

• Evitar la contaminación del agua para lavar y limpiar.

Además se debe tener presente las siguientes consideraciones:
La cubierta, la bodega y todas las superficies que pueden estar en contacto con el pescado tienen que ser de material liso, fácil de limpiar y resistente a la corrosión.

Las pinturas y los materiales de revestimiento de los equipos y las superficies que pueden tocar el pescado tienen que ser resistentes, no tóxicos y no transmitir olores ni sabores anormales.

Disponer, como mínimo, de:
• Agujeros y drenajes suficientes para que el agua y otros líquidos no se acumulen.
• Contenedores o un espacio específico para colocar el producto, limpio, bien drenado y alejado del motor que a su vez mantenga el pescado frío y protegido.
• Depósitos isotermos para el hielo, limpios, drenados y con capacidad suficiente.
• Recipientes tapados para los residuos y las basuras, fáciles de vaciar y limpiar.
• Un espacio o un contenedor para almacenar la carnada destinada exclusivamente a este uso.
• Un armario o un espacio específico para guardar los utensilios y los productos de limpieza lejos de la zona de estiba del pescado.

C. Taller sobre puestos de recibo apropiados para la comercialización de productos de la pesca

Esta actividad se ejecutó el pasado 29 de setiembre del 2011 en la localidad de Puerto Níspero y tuvo una regular asistencia (figura 32). En este taller se presentaron algunos conceptos básicos sobre las características de un adecuado puesto de recibo y producto de una inspección (visita anterior) del terreno donde la Asociación de Pescadores de Puerto Níspero pretende construir un puesto de recibo, se diseñó y entregó el día del taller un esquema de un puesto de recibo. El diseño entregado será mejorado y nuevamente presentado a la Asociación. Se anexa material entregado y diseño elaborado, anexo 04 y 05 respectivamente.

Figura 32. Taller puestos de recibo apropiados para la comercialización de productos de pesca, realizado en Puerto Níspero.

Es importante aclarar que esta actividad se ha vinculado con el proyecto “Estrategia de manejo participativa de las pesquerías del Golfo de Nicoya, Costa Rica”, específicamente con el objetivo: Promover mejoras de
manipulación y conservación de las especies seleccionadas, el cual es afín a los objetivos que atendemos con el proyecto de Regionalización Interuniversitaria Región Pacífico Central.

D. Plegable de logros 2010

Entre otras actividades realizadas contribuyo en la elaboración un plegable sobre los logros obtenidos en el 2010 en el área de Control de Calidad. En el anexo 06 se presenta el plegable de logros 2010, Laboratorio de Control de Calidad.

E. Primer Taller de Competitividad 2011

El 6 de mayo del 2011 se realizó en el auditorio de la Estación de Biología Marina de la Escuela de Ciencias Biológicas, Universidad Nacional de Costa Rica el taller de competitividad UCR-UNA-ITCR, en el cual se socializaron los resultados y el plan de trabajo para el segundo semestre 2011. Además de las propuestas nuevas en gestión. Posteriormente se presentó y analizo el Formulario nuevo para informes 2011 y presentación de IIDR 2010 que continúan y nuevas.

F. Presentación de resultados 2010, Comisión de Regionalización Interuniversitaria del Pacífico Central (CRIPC), Universidad Nacional

El 27 de mayo del 2011 se realizó en el auditorio de la Capitanía de Puerto en Puntarenas la presentación de resultados 2010 a cargo de los investigadores IIDR de los laboratorios de la Estación de Biología Marina de la Escuela de Ciencias Biológicas de la UNA, en el cual se socializaron los resultados de la iniciativa “Incremento en la competitividad de las MIPYMES del Pacífico Central mediante un plan de fortalecimiento interuniversitario
regional” presentando los alcances que se han obtenido con las comunidades costeras del Golfo de Nicoya a varios sectores públicos y privados de la zona de Puntarenas (figura 33).

Al taller asistieron actores locales como la Asociación de Pescadores de San Juanillo, Granja ostrícola de Punta Cuchillo, COOPAALI R.L., Instituto Nacional de Aprendizaje, Instituto Mixto de Ayuda Social, Colegio Científico de la Universidad de Costa Rica, Universidad Técnica Nacional, Cámara de Industria y Comercio, Zona Franca de Puntarenas, así como académicos y autoridades de la UNA: Estación de Ciencias Marino Costeras (ECMAR), Estación de Biología Marina y Escuela de Ciencias Biológicas.

Figura 33. Taller de resultados 2010, realizado en la Capitanía de Puntarenas.
VIII. Conclusiones

Con los resultados obtenidos se pudo apreciar un beneficio en el mantenimiento de la frescura del producto pesquero debido al empaque al vacío, técnica utilizada para además de incrementar la vida útil también incrementar el valor agregado en la comercialización al darle una apariencia física agradable a los consumidores.

Conforme van transcurriendo los días de almacenamiento en hielo va aumentando el porcentaje de valor K presente en la carne de pescado. Entre mayor sea este porcentaje mayor será la pérdida de frescura y el grado de deterioro, esto es debido al avance de la pérdida de fosfato en el nucleótido del ATP presente en el músculo.

En la especie mano de piedra C. unionensis el máximo de tiempo para ser consumido fue el día 17, obteniéndose un valor K cercano al 30 %. Entre los días 3 al 10 los valores obtenidos permanecieron muy constantes promediando el 20 %, valor máximo permitido para que el pescado sea consumido en estado crudo sin que sea perjudicial a la salud.

En los filetes de corvina reina C. albus se estableció el día 21 como límite de rechazo para no ser apta para el consumo. Los filetes con un QI por encima de 5 fueron considerados inaceptables por los evaluadores, dicho valor se alcanzó al día 21 de almacenamiento en hielo. En el método TM los filetes de C. albus alcanzaron valores de 6 a los 21 días de almacenamiento en hielo, valores considerados límite máximo para el consumo de este tipo de alimentos.
En la composición nutricional de ostra, *C. gigas*, zona Punta Morales/Costa de Pájaros la humedad fue el componente porcentual con mayor presencia en el organismo, con un máximo en el mes de noviembre y un mínimo en abril. Por su parte, el porcentaje de proteínas fue el segundo componente más abundante con un máximo y un mínimo valor porcentual para los meses de abril y noviembre respectivamente, estos resultados demuestran que el porcentaje de humedad es inversamente proporcional al porcentaje de proteína.

En cuanto al valor calórico presento un máximo y mínimo en estos mismos meses de abril y noviembre respectivamente, este comportamiento similar a las proteínas se debe a que el valor calórico está directamente relacionado y depende de la cantidad de proteínas y lípidos en el alimento.

Según los resultados el contenido proteico y el valor calórico son inversamente proporcionales a la humedad, además de que esta especie es del tipo de molusco de muy bajo contenido graso y moderado contenido proteico.
Actividades de investigación y extensión realizadas en el año 2012

I. Análisis de la composición nutricional de ostra, *Crassostrea gigas* zona Punta Cuchillo/Paquera

A. Metodología

1. Colecta y tratamiento de la muestra

Para la determinación de proximales en ostra se utilizaron mensualmente 30 unidades por lote de ostra *C. gigas* las cuales se dividieron en dos grupos de 15 ejemplares cada uno. El muestreo comenzó en febrero del 2011 y finalizó en marzo del 2012. La muestra proviene de las MIPYMES Familia Peralta, Punta Cuchillo/Paquera, Puntarenas, Costa Rica. En la figura 34 se presenta las muestras de ostra colectadas y traídas al laboratorio para el análisis nutricional.

Figura 34. Muestra de ostra *C. gigas* para análisis nutricional.
Los ejemplares fueron trasladados al laboratorio en donde se toma la longitud total (máxima medida desde el eje anterior-posterior), altura y diámetro utilizando un vernier de 0.05 mm de precisión. Posteriormente las ostras son pesadas, registradas como peso total y peso fresco, para este último se abrieron sus conchas, se removió y drenó la carne por 10 minutos con papel adsorbente y se registró el peso fresco de la carne.

2. Análisis de la muestra
Todo el tejido fue deshidratado en un horno a 100º C por 24 horas para posteriormente medir su peso seco utilizando una balanza con precisión de 0.01 g determinando así el porcentaje de humedad. El material seco de cada grupo se molió y homogenizó para determinar por duplicado proteínas, lípidos y cenizas, según la metodología de AOAC (1984) para el análisis nutricional. Los resultados de los análisis para todo el periodo de muestreo se presentan en la Cuadro 7.

B. Resultados y discusión
En el cuadro 8 se representan los resultados para las variaciones mensuales de la composición química nutricional de ostra *C. gigas*. Se puede observar como varía esta composición debido a posibles factores intrínsecos (sexo, tamaño, edad, estado de nutrición) y extrínsecos (zona de reproducción, época del año, entre otras) (Valls y Paredes 2010).

La humedad fue el componente porcentual con mayor presencia en el organismo, el cual presentó un máximo de 90.2±1.6 % en el mes de noviembre y un mínimo de 80.7±1.9 % en abril, misma tendencia que se presentó en la ostra proveniente de la zona de Punta Morales. Por su parte, el porcentaje de proteínas fue el segundo componente más abundante con valores de 11.0±0.5 % a 5.4±0.7 para los meses de abril y noviembre.
respectivamente, misma tendencia que se presentó en la ostra proveniente de la zona de Punta Morales. Es importante mencionar que ambos meses son de transición; abril época seca a lluviosa y noviembre época lluviosa a seca. En cuanto al valor calórico presenta un máximo y mínimo en estos mismos meses de abril y noviembre con valores de 101.87±0.55 y 53.45±0.40 Kcal/100g respectivamente, este comportamiento similar a las proteínas se debe a que el valor calórico está directamente relacionado y depende de la cantidad de proteínas y lípidos en el alimento. En base a estos resultados se puede aseverar que el contenido proteico y el valor calórico son inversamente proporcionales a la humedad. En el anexo 11 se presenta la comparación de la composición nutricional de las zonas de estudio; Punta Morales y Punta Cuchillo.

CUADRO 8.
Composición química nutricional de la porción comestible de C. gigas zona Punta Cuchillo/Paquera. (Base Húmeda)

<table>
<thead>
<tr>
<th>Mes-Año</th>
<th>Humedad (%)</th>
<th>Cenizas (%)</th>
<th>Lípidos (%)</th>
<th>Proteínas (%)</th>
<th>Carbohidratos (%)</th>
<th>Valor calórico (Kcal/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb-11</td>
<td>81.5±2.1</td>
<td>2.7±0.3</td>
<td>1.5±0.1</td>
<td>10.1±0.5</td>
<td>4.2±0.8</td>
<td>89.71±0.04</td>
</tr>
<tr>
<td>Mar-11</td>
<td>82.6±3.3</td>
<td>3.0±0.5</td>
<td>1.6±0.3</td>
<td>10.4±0.7</td>
<td>2.4±1.2</td>
<td>85.04±0.08</td>
</tr>
<tr>
<td>Abr-11</td>
<td>80.7±1.9</td>
<td>1.7±0.8</td>
<td>2.2±0.6</td>
<td>11.0±0.5</td>
<td>4.4±0.9</td>
<td>101.87±0.24</td>
</tr>
<tr>
<td>May-11</td>
<td>83.2±1.3</td>
<td>2.3±0.2</td>
<td>1.4±0.0</td>
<td>10.1±0.6</td>
<td>2.9±1.0</td>
<td>83.58±0.09</td>
</tr>
<tr>
<td>Jun-11</td>
<td>84.7±1.9</td>
<td>2.9±0.1</td>
<td>1.9±0.1</td>
<td>8.0±0.5</td>
<td>2.6±0.7</td>
<td>74.08±0.04</td>
</tr>
<tr>
<td>Jul-11</td>
<td>82.8±2.8</td>
<td>2.6±0.6</td>
<td>1.9±0.2</td>
<td>9.0±0.3</td>
<td>3.8±1.0</td>
<td>84.77±0.06</td>
</tr>
<tr>
<td>Ago-11</td>
<td>83.2±2.5</td>
<td>2.6±0.5</td>
<td>1.7±0.0</td>
<td>9.3±0.3</td>
<td>3.1±0.8</td>
<td>82.84±0.10</td>
</tr>
<tr>
<td>Sep-11</td>
<td>87.6±1.2</td>
<td>0.7±0.3</td>
<td>1.0±0.1</td>
<td>6.8±0.4</td>
<td>3.8±0.5</td>
<td>64.48±0.00</td>
</tr>
<tr>
<td>Oct-11</td>
<td>89.2±1.6</td>
<td>0.6±0.4</td>
<td>1.3±0.2</td>
<td>5.5±1.4</td>
<td>3.4±0.9</td>
<td>58.15±0.02</td>
</tr>
<tr>
<td>Nov-11</td>
<td>90.2±1.6</td>
<td>0.6±0.4</td>
<td>1.3±0.1</td>
<td>5.4±0.7</td>
<td>2.5±0.7</td>
<td>53.45±0.05</td>
</tr>
<tr>
<td>Dic-11</td>
<td>85.0±1.5</td>
<td>1.0±0.2</td>
<td>1.3±0.1</td>
<td>8.0±0.2</td>
<td>4.7±0.7</td>
<td>77.46±0.03</td>
</tr>
<tr>
<td>Ene-12</td>
<td>85.4±1.0</td>
<td>0.8±0.1</td>
<td>2.3±0.2</td>
<td>7.9±0.4</td>
<td>3.5±0.3</td>
<td>82.05±0.1</td>
</tr>
<tr>
<td>Feb-12</td>
<td>83.7±1.4</td>
<td>1.0±0.1</td>
<td>2.0±0.9</td>
<td>9.0±0.3</td>
<td>4.3±0.1</td>
<td>88.50±0.17</td>
</tr>
</tbody>
</table>

Datos son expresados como promedio ± desviación estándar de dos repeticiones.
II. Análisis de frescura y vida útil en piangua *A. tuberculosa* empacada al vacío (con concha y solo carne, depuradas y sin depurar)

A. Metodología

1. **Colecta y tratamiento de la muestra**

El 11 de noviembre del 2011 se inició el estudio de comparar la vida útil de la piangua al estar empacada al vacío, se llevó al laboratorio dos lotes de esta especie (depuradas y sin depurar) (figura 35) de aproximadamente 340 unidades cada uno.

![Figura 35. Muestra de piangua *A. tuberculosa* depuradas y sin depurar para empaque al vacío y análisis de frescura.](image)

Se trabajó primero con el lote de muestras depuradas, se procedió a empacar al vacío las pianguas con concha en grupos de cinco unidades por bolsa para un total de 9 bolsas (figura 36), posteriormente las muestras restantes se abrieron y se extrajo la carne y se empaco al vacío en grupos de cinco unidades por bolsa para un total de 9 bolsas. Al lote de pianguas sin depurar se le hizo el mismo tratamiento de empaque al vacío que el descrito para las depuradas.
2. **Determinación de pH muscular**

Cada tiempo determinado se sacó de la hielera una bolsa empacada al vacío de cada uno de los tratamientos: con concha depurada, con concha sin depurar, carne depurada y carne sin depurar, y se homogenizó mediante maceración aproximadamente 20 gramos del contenido de cada bolsa con 20 mL de agua destilada. La medición de pH se realizó con un pH-Metro marca Thermo modelo 420A Orión 3 Star. Para la medición se sumergió el electrodo de Ag/AgCl del pH-Metro en la pasta de carne homogenizada. La medición se realizó por triplicado.

3. **Análisis sensorial mediante método de índice de calidad (QIM)**

El análisis sensorial consiste en determinar por medio de los sentidos (vista, tacto y olor) el estado cambiante de fresco a no fresco por el cual pasa el producto al estar almacenado a una determinada temperatura. Para esto se utiliza la hoja de evaluación sensorial del anexo 01.
4. Extracción de los nucleótidos y determinación de valor K

Se realizó un extracto de los nucleótidos presentes en la carne utilizando ácido perclórico al 10 %, se centrífugó en frío con centrífuga marca Hermle Labnet modelo z383 K y posteriormente se regula a pH 7 con solución de hidróxido de potasio KOH al 10 %, midiendo constantemente con papel especial de pH. Los extractos neutralizados se almacenaron a - 30 ºC para su posterior análisis de frescura mediante el método de valor K el cual ya fue descrito anteriormente en este libro.

B. Resultados y discusión

1. Cambio en el valor de pH muscular

El pH se mantiene con poca variación a lo largo del tiempo de almacenamiento, sin embargo, en la figura 37 se observa que para la carne de piangua depurada y sin depurar empacada al vacío se mantuvo un pH menor en comparación con el organismo empacado con la concha, según la literatura pH cercanos a 7 son indicativos de menor frescura.

Figura 37. Cambios en el valor de pH muscular en piangua A. tuberculosa almacenada en hielo.
2. **Cambios en las características sensoriales**

En la figura 38 se presentan los resultados obtenidos en la evaluación sensorial según la metodología QIM, se observa que la perdida de frescura según las características sensoriales son menores en las pianguas depuradas y empacadas con la concha y solo carne, con lo cual presentaron menores valor de QI a lo largo del tiempo de almacenamiento en hielo.

![Figura 38. Cambios en el índice de calidad (QI) en piangua A. tuberculosa almacenada en hielo.](image)

En base a estos resultados se puede afirmar que la depuración ayuda a mantener mejor la carne de la piangua. Otro aspecto importante a considerar es que a simple vista, no pareciera haber diferencia en la apariencia sensorial de la piangua empacada con o sin la concha.

3. **Cambios en el índice de frescura valor K**

En la determinación de la perdida frescura mediante el método de valor K por cromatografía de intercambio iónico, los resultados obtenidos se presentan la figura 39. Se puede observar que las pianguas con concha empacadas al vacío y depuradas la perdida de frescura fue menor, alcanzando valores
superiores al 40 % (no apto para el consumo) hasta el día 31, sin embargo para la piangua con concha sin depurar presento un comportamiento igual, presentando una menor perdida de frescura. Para las muestras de piangua empacada al vacío depurada y sin depurar en presentación de solo carne empacada, la tendencia fue a alcanzar valores altos (40 %) rápidamente 10 y 13 días respectivamente. La muestra que presento mayor pérdida de frescura fue la de empaque solo carne de piangua sin depurar, esta muestra al día 5 presento valores superiores a 20 % (no apta para ser consumida cruda), y superior al 40 % (no apta para consumir cocinada) al día 13.

![Figura 39. Cambios en el índice de frescura valor K en piangua A. tuberculosa almacenada en hielo.](image)

III. Determinación del tiempo estimado de vida y pérdida de frescura en ostra C. gigas a tres diferentes temperaturas.

A. Metodología

1. Colecta y tratamiento de la muestra
Este estudio comenzó el 30 de abril del 2012, como segunda repetición del análisis ya presentado en el capítulo anterior. Se adquirieron 30 unidades de
C. gigas de la MIPYMES Ostra Rica, Familia Peralta, Punta Cuchillo/Paquera, las cuales se dividieron en tres grupos de 10 ejemplares cada uno, un grupo se colocaron en hielo (2-4 ºC), otro en refrigeradora (8ºC) y el último a temperatura ambiente (25 ºC). Las muestras almacenadas a las diferentes temperaturas se inspeccionaron sensorialmente cada 6 horas. Como signo de referencia para saber si el animal está vivo, se verificó que las valvas estuvieran completamente cerradas y que presentaran resistencia al intentar abrirlas. En la figura 40 se presenta los tratamientos de las muestras de ostra C. gigas a las tres diferentes temperaturas.

Figura 40. Almacenamiento de las muestras de ostra C. gigas a tres diferentes temperaturas

2. Análisis de la muestra
Para determinar la vida útil una vez que se da el deceso de las muestras a las diferentes temperaturas, se procedió de la siguiente forma: Para las muestras en hielo y 8 ºC se tomaron 2 ejemplares cada 48 horas y para las
muestras a 25 ºC, 2 ejemplares cada 24 horas. Una vez que se dio del deceso de los organismos se guardaron en sus respectivas temperaturas y se muestreo cada 3 o 4 días. Se les aplicó el análisis sensorial, para posteriormente procesarlas según protocolo para preparación de muestras, utilizadas en la determinación de frescura mediante Valor K y pH descritos anteriormente en este libro. Estos análisis se realizaron por duplicado.

B. Resultados y discusión

1. Determinación del tiempo estimado de vida
En los cuadros 9, 10 y 11 se presentan los resultados obtenidos en las determinaciones de resistencia que presentan la ostra, expresada en tiempo que dura en morir al estar almacenada a temperaturas de 2, 8 y 25 ºC respectivamente. En la determinación a 2 ºC se eliminó el segundo muestreo debido a que las ostras no se abrieron cuando murieron (al abrirse la ostra se considera como indicativo para saber que ya murió) por lo cual no se pudo estimar el tiempo aproximado en las que las mismas iban muriendo. Comparando las tres temperaturas se puede observar en los resultados obtenidos, que la temperatura a la cual presentan mayor sobrevivencia es a temperatura ambiente (25 ºC), promediando un valor aproximado de 5 días según los tres ensayos realizados. A la temperatura de 8 ºC el promedio de días en permanecer vivas fue de 4, mientras a que a 2 ºC (hielo) se presentó el menor tiempo, correspondiente a un tiempo promedio de 2 días. En base a estos resultados se puede indicar que la sobrevivencia de estos organismos es menor a bajas temperaturas (2 ºC), el frío las afecta a tal punto de hacer que mueran más rápido en comparación de que si estuvieran solo fuera de su medio a una temperatura ambiente de 25 ºC aproximadamente. En el anexo 12 se resumen los resultados obtenidos en este estudio.
CUADRO 9.
Determinación del tiempo que dura en morir la ostra *C. gigas* al estar almacenada en hielo (2°C)

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Fecha de inicio</th>
<th>Hora de inicio</th>
<th>Fecha en morir</th>
<th>Hora en morir</th>
<th>Muestras muertas</th>
<th>Tiempo en morir (h)</th>
<th>Tiempo en morir (Días)</th>
<th>Promedio (Días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>05/10/2011</td>
<td>01:00 pm</td>
<td>06/10/2011</td>
<td>09:00 a.m.</td>
<td>5,8,10,9</td>
<td>20</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06/10/2011</td>
<td>11:00 a.m.</td>
<td>6,1,2</td>
<td>22</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06/10/2011</td>
<td>12:00 p.m.</td>
<td>4,7</td>
<td>23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/10/2011</td>
<td>08:00 a.m.</td>
<td>3</td>
<td>43</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>01/08/2012</td>
<td>03:00 pm</td>
<td>02/08/2012</td>
<td>09:00 a.m.</td>
<td>7,8,5,4,2,1,11,6</td>
<td>19</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/08/2012</td>
<td>08:00 a.m.</td>
<td>9,1</td>
<td>137</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>08/07/2012</td>
<td>08:00 a.m.</td>
<td>3</td>
<td>161</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Promedio 2

CUADRO 10.
Determinación del tiempo que dura en morir la ostra *C. gigas* al estar almacenada en refrigeración a 8 ºC

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Fecha de inicio</th>
<th>Hora de inicio</th>
<th>Fecha en morir</th>
<th>Hora en morir</th>
<th>Muestras muertas</th>
<th>Tiempo en morir (h)</th>
<th>Tiempo en morir (Días)</th>
<th>Promedio (Días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>05/10/2011</td>
<td>12:00 pm</td>
<td>06/10/2011</td>
<td>08:00 a.m.</td>
<td>1,4,7,9</td>
<td>20</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06/10/2011</td>
<td>09:00 a.m.</td>
<td>8</td>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06/10/2011</td>
<td>03:00 p.m.</td>
<td>10</td>
<td>27</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06/10/2011</td>
<td>05:00 p.m.</td>
<td>5</td>
<td>29</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/10/2011</td>
<td>08:00 a.m.</td>
<td>3</td>
<td>44</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/10/2011</td>
<td>12:00 p.m.</td>
<td>2,6</td>
<td>48</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30/04/2012</td>
<td>11:00 am</td>
<td>02/05/2012</td>
<td>02:00 p.m.</td>
<td>1</td>
<td>51</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10/05/2012</td>
<td>03:00 p.m.</td>
<td>2</td>
<td>244</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11/05/2012</td>
<td>08:00 a.m.</td>
<td>7,6,8,9,10,3,4,5</td>
<td>261</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>01/08/2012</td>
<td>03:00 pm</td>
<td>02/08/2012</td>
<td>09:00 a.m.</td>
<td>6,1,3,5,7</td>
<td>18</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06/08/2012</td>
<td>08:00 a.m.</td>
<td>9</td>
<td>113</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06/08/2012</td>
<td>05:00 p.m.</td>
<td>2,4,10</td>
<td>122</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/08/2012</td>
<td>02:00 p.m.</td>
<td>8</td>
<td>167</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Promedio 4
CUADRO 11.
Determinación del tiempo que dura en morir la ostra *C. gigas* al estar almacenada a temperatura ambiente 25 ºC

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Fecha de inicio</th>
<th>Hora de inicio</th>
<th>Fecha en morir</th>
<th>Hora en morir</th>
<th>Muestras muertas</th>
<th>Tiempo en morir (h)</th>
<th>Tiempo en morir (Días)</th>
<th>Promedio (Días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14/11/2011</td>
<td>09:00 a.m.</td>
<td>18/11/2011</td>
<td>11:00 a.m.</td>
<td>1</td>
<td>98</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18/11/2011</td>
<td>10:00 p.m.</td>
<td>2</td>
<td>110</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19/11/2011</td>
<td>11:00 a.m.</td>
<td>6</td>
<td>120</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19/11/2011</td>
<td>01:00 p.m.</td>
<td>8</td>
<td>122</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19/11/2011</td>
<td>10:00 p.m.</td>
<td>10</td>
<td>131</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20/11/2011</td>
<td>11:00 a.m.</td>
<td>12</td>
<td>144</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21/11/2011</td>
<td>07:00 a.m.</td>
<td>3,4,7</td>
<td>164</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21/11/2011</td>
<td>09:00 p.m.</td>
<td>5,9</td>
<td>166</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30/04/2012</td>
<td>11:00 am</td>
<td>02/05/2012</td>
<td>02:00 p.m.</td>
<td>2</td>
<td>51</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>03/05/2012</td>
<td>02:00 p.m.</td>
<td>9</td>
<td>75</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>04/05/2012</td>
<td>09:00 a.m.</td>
<td>4,5,6</td>
<td>94</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>04/05/2012</td>
<td>05:00 p.m.</td>
<td>3</td>
<td>101</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/05/2012</td>
<td>08:00 a.m.</td>
<td>7</td>
<td>165</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>07/05/2012</td>
<td>02:00 p.m.</td>
<td>1</td>
<td>171</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>08/05/2012</td>
<td>08:00 a.m.</td>
<td>10</td>
<td>189</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>09/05/2012</td>
<td>07:00 a.m.</td>
<td>8</td>
<td>212</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>01/08/2012</td>
<td>03:00 p.m.</td>
<td>06/08/2012</td>
<td>08:00 a.m.</td>
<td>1-10 (todas)</td>
<td>113</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

2. **Cambio en el valor de pH muscular**

Se observa en la figura 41 que el pH se mantiene más bajo al (ácido) al estar la ostra almacenada en refrigeración a 8 ºC. Por el contrario, en el almacenamiento en hielo (2 ºC) alcanza valores más altos de pH llegando casi a la neutralidad. Debido a estos valores no se pudo determinar bien la vida útil de la ostra mediante este método.
3. **Cambios en las características sensoriales**

Mediante el método del Índice de Calidad (QIM) se pudo determinar el grado de avance de la perdida de frescura en el molusco y por consiguiente la vida útil para ser apta para el consumo humano. En la figura 42 se observa como para la temperatura de 25 °C el alimento rápidamente alcanza valores altos (día 2), superiores a 6 unidades de QI. Por el contrario, en refrigeración a 8 °C, se conservó por más tiempo resultando el cuarto día como máximo para ser consumida. Por último, en hielo (2 °C) los resultados fueron según los esperados, ya que el molusco se conservó en condiciones de frescura adecuadas según características sensoriales hasta el día 15 (figura 41).
4. **Cambios en el índice de frescura valor K**

En la figura 43 se presentan los resultados del grado de avance de la perdida de frescura, determinado mediante el método de valor K por cromatografía de intercambio iónico. Se puede observar que a 25 °C de temperatura la carne de ostra alcanza rápidamente (día 1) valores superiores a 40 % indicador de la pérdida total de frescura y por lo tanto de una avanzada descomposición. En comparación, las temperaturas de refrigeración (8 °C) y hielo (2 °C) se mantuvieron con un grado menor de pérdida de frescura, muy constante en ambas, siendo un poco menor la perdida de frescura en la ostra almacenada a 2 °C, concordando según lo esperado con el método de QI y con lo descrito en la bibliografía, al tener temperaturas bajas cercanas a cero se aumenta el tiempo de frescura de los productos pesqueros y acuícolas. En ambas se alcanzaron valores muy superiores a 20 % hasta el día 15, siendo considerada no apta para el consumo en estado crudo.
IV. Otras actividades realizadas

A. Talleres prácticas para incrementar el valor agregado

Los talleres fueron realizados el 10 y 11 de mayo del 2012 en Puerto Palito en Isla Chira con la participación de los pescadores miembros de la Asociación de Pescadores de esta comunidad (ASOPECUPACHI) y posteriormente en Puntarenas en la Estación de Biología Marina respectivamente, este último se realizó con miembros de la MIPYME Asociación de Cultivadores Marinos (ACUAMAR) (figura 44).

Dicha actividad consistió en una presentación sobre la tendencia del consumo de alimentos hoy en día, el significado de valor agregado, las ventajas y características, así como ejemplos de alimentos con valor agregado, incluyendo el pescado y moluscos. Entre estos ejemplos destaco...
la técnica de empaque al vacío, sus beneficio e importancia para mantener la frescura de los productos pesqueros y el aumento en la vida útil de los mismos. Además se presentó lo correspondiente a los resultados obtenidos en los estudios realizados a la ostra que se encuentran en este capítulo.

Figura 44. Taller prácticas para incrementar el valor agregado, realizado en Puerto Palito I. Chira y en Puntarenas.
V. Conclusiones

La composición química nutricional de ostra *C. gigas* zona Punta Cuchillo/Paquera presenta variaciones mensuales. A simple vista la humedad y las proteínas son las que más variación experimentan y en menor proporción la cenizas. Estas diferencias se atribuyen a factores tales como sexo, tamaño, edad, estado de nutrición, zona de reproducción, época del año, entre otras.

El valor calórico está directamente relacionado y depende de la cantidad de proteínas y lípidos en el alimento. Mientras que el contenido proteico y el valor calórico son inversamente proporcionales a la humedad.

Con el método de pH no se pudo determinar la efectividad de la depuración y el empaque al vacío. Sin embargo, con el método del Índice de Calidad (QIM) se obtuvo una disminución en el grado de perdida de frescura en la ostra depurada solo carne y con concha.

Para las muestras de piangua empacada al vacío depurada y sin depurar en presentación de solo carne empacada, la tendencia fue a alcanzar valores altos (40%) rápidamente. La muestra que presento mayor pérdida de frescura fue la de empaque solo carne de piangua sin depurar y la que presento menor perdida de frescura fue la ostra empacada con concha y depurada.

La depuración ayuda a mantener por más tiempo fresca la carne de la piangua. Sin embargo, a simple vista no hubo una diferencia en la apariencia sensorial de la piangua empacada con o sin la concha.
Con el método de pH no se pudo determinar un tiempo de vida útil estimado para la ostra almacenada a tres diferentes temperaturas, los datos obtenidos no resultaron según lo esperado,

Mediante el método del Índice de Calidad (QIM) y de valor K se determinó el grado de avance de la perdida de frescura en la ostra almacenada a tres temperaturas por consiguiente la vida útil para ser apta para el consumo humano.

El hielo resulto ser el medio de almacenamiento más adecuado para conservar la ostra por mayor tiempo de vida útil resultando apta para el consumo humano hasta el día 14 del almacenamiento, según los resultados obtenidos mediante QIM.

Las ostras presentaron mayor resistencia para sobrevivir estando a temperatura ambiente (25 °C), simplemente como si se extrajeran de su medio, mientras que al aplicarles alguna temperatura baja, refrigeración o enhielado, tendieron a presentar menor resistencia muriendo más rápido.
Actividades de investigación y extensión realizadas en el año 2013

I. Análisis de la composición nutricional de ostra, *Crassostrea gigas*. Zonas Isla Chira e Isla Cedros

A. Metodología

1. **Preparación de reactivos y cotizaciones**
La evaluación nutricional (humedad, proteínas, Lípidos, carbohidratos y cenizas) se realizaron a las muestras que se obtuvieron durante las visitas de seguimiento, esto con el fin de compararlos con los datos de otras zonas ya obtenidas. Para esta actividad se prepararon todos los reactivos necesarios para el análisis del porcentaje de proteína presente en las muestras: ácido bórico al 4% para la recolección de amoniaco liberado en la destilación, solución de hidróxido de sodio al 15 M para la liberación del amoniaco en la destilación, mezcla de agentes catalíticos sulfato de potasio/sulfato de cobre para la digestión del sulfato de amonio, soluciones estandarizadas de ácido clorhídrico 0.1 N e hidróxido de sodio 0.1 N para la valoración del porcentaje de nitrógeno y proteína presentes en la muestra.

2. **Colecta y tratamiento de la muestra**
Para la determinación de composición nutricional en ostra se utilizaron mensualmente 30 unidades por lote de ostra *C. gigas* las cuales se dividieron en dos grupos de 15 ejemplares cada uno. El muestreo comenzó a partir de
abril del 2013 para las muestras provenientes de la Asociación de Pescadores Cuerderos de Palito Isla de Chira (ASOPECUPACHI) y a partir de mayo del 2013 para la Asociación de Cultivadores Marinos (ACUAMAR) Puntarenas, Costa Rica. En la figura 45 se presenta las muestras de ostra colectadas y trasladadas al laboratorio para el análisis nutricional.

Los ejemplares fueron trasladados al laboratorio en donde se tomaron las medidas biométricas, longitud total (máxima medida desde el eje anterior-posterior), altura y diámetro utilizando un vernier de 0.05 mm de precisión (figura 46). Posteriormente las ostras fueron pesadas y registradas como peso total y peso fresco, para este último se abrieron sus conchas, se removió y drenó la carne por 10 minutos con papel adsorbente y se registró el peso fresco de la carne.
3. **Análisis de la muestra**

Todo el tejido fue deshidratado en un horno a 102 ºC por 24 horas para posteriormente medir su peso seco utilizando una balanza con precisión de 0.01 g determinando así el porcentaje de humedad. El material seco de cada grupo se molió y homogenizó para determinar por duplicado proteínas, lípidos (figura 47) y cenizas, según la metodología de AOAC (1984) para el análisis nutricional. Los resultados de los análisis para los primeros meses de muestreo se presentan en la cuadro 11 y 12.

![Figura 47. Equipo de extracción Soxhlet para análisis de lípidos](image)

B. Resultados y discusión

En los cuadros 12 y 13 se representan los resultados para los primeros meses (abril y mayo) de la composición química nutricional de ostra *C. gigas*, correspondientes a las zonas de Puerto Palito isla Chira de la asociación ASOPECUPACHI y la zona de isla Cedros de la asociación ACUAMAR. En ambas zonas se puede observar como varía esta composición debido a posibles factores intrínsecos como el sexo, tamaño, edad, estado de nutrición, así como la época del año (Valls y Paredes 2010).

En las ostras traídas de Puerto Palito isla Chira e isla Cedros la humedad fue el componente porcentual con mayor presencia en el organismo, el cual
presento un máximo de 90.8±1.6 % y 83.2±2.0 % respectivamente, siendo mayor para la zona de Puerto Palito isla Chira. Por su parte, el porcentaje de proteínas fue el segundo componente más abundante en ambas zonas con un valores relativamente bajos de 6.4±0.1 % y 5.8±0.1 para la zona de Puerto Palito isla Chira, en comparación a las ostras de isla Cedros en donde se obtuvieron valores de 11.0±0.6 % y 10.7±0.2.

A pesar de que ambas muestras comenzaron en meses diferentes hay que destacar la denotada diferencia que se da entre ambas zonas, siendo también mayor los componentes de cenizas, lípidos y carbohidratos para la zona de isla Cedros en la cual opera la asociación de ACUAMAR (Cuadro 11 y 12).

En cuanto al valor calórico también se obtuvo un mayor contenido para esta zona de isla Cedros presentando un máximo y mínimo de 90.70±0.04 y 88.19±0.04 Kcal en 100 gramos de carne, este comportamiento similar a las proteínas se debe a que el valor calórico está directamente relacionado y depende de la cantidad de proteínas, lípidos y carbohidratos en el alimento. En base a estos resultados se puede aseverar que el contenido proteico y el valor calórico son inversamente proporcionales a la humedad.

En los cuadros 14, 15, 16 y 17 se muestran la determinación del porcentaje de humedad y las mediciones biométricas para las muestras de ostra C. gigas para ambas zonas de estudio. En cuanto a lo incompleto de los datos se debe a que no se han podido analizar los mese faltantes del año 2013 por motivo de falta de recurso humano.
CUADRO 12.
Composición química nutricional de la porción comestible de *C. gigas*. Zona Puerto Palito isla Chira ASOPECUPACHI (Base Húmeda)

<table>
<thead>
<tr>
<th>Mes-Año</th>
<th>Humedad (%)</th>
<th>Cenizas (%)</th>
<th>Lípidos (%)</th>
<th>Proteínas (%)</th>
<th>Carbohidratos (%)</th>
<th>Valor calórico (Kcal/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abr-13 A</td>
<td>89,8±1,2</td>
<td>1,6±0,0</td>
<td>1,1±0,8</td>
<td>6,4±0,1</td>
<td>1,2±0,1</td>
<td>51,60±0,04</td>
</tr>
<tr>
<td>Abr-13 B</td>
<td>90,8±1,6</td>
<td>1,5±0,1</td>
<td>1,1±0,2</td>
<td>5,8±0,1</td>
<td>0,9±0,1</td>
<td>47,10±0,04</td>
</tr>
<tr>
<td>May-13 A</td>
<td>91,2±1,2</td>
<td>1,3±0,1</td>
<td>0,9±0,4</td>
<td>5,6±1,1</td>
<td>1,1±0,1</td>
<td>44,67±0,04</td>
</tr>
<tr>
<td>May-13 B</td>
<td>91,5±0,9</td>
<td>1,3±0,1</td>
<td>0,7±0,7</td>
<td>5,2±0,2</td>
<td>1,2±0,1</td>
<td>41,82±0,04</td>
</tr>
<tr>
<td>Jun-13 A</td>
<td>89,4±1,2</td>
<td>1,6±0,0</td>
<td>1,1±0,5</td>
<td>7,1±0,5</td>
<td>0,8±0,1</td>
<td>53,96±0,04</td>
</tr>
<tr>
<td>Jun-13 B</td>
<td>90,4±1,8</td>
<td>1,3±0,1</td>
<td>1,0±0,1</td>
<td>6,5±1,0</td>
<td>0,8±0,1</td>
<td>50,11±0,04</td>
</tr>
</tbody>
</table>

CUADRO 13.
Composición química nutricional de la porción comestible de *C. gigas*. Zona isla Cedros ACUAMAR (Base Húmeda)

<table>
<thead>
<tr>
<th>Mes-Año</th>
<th>Humedad (%)</th>
<th>Cenizas (%)</th>
<th>Lípidos (%)</th>
<th>Proteínas (%)</th>
<th>Carbohidratos (%)</th>
<th>Valor calórico (Kcal/100g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May-13 A</td>
<td>83,2±2,0</td>
<td>2,1±0,3</td>
<td>2,0±0,3</td>
<td>10,7±0,2</td>
<td>2,0±0,1</td>
<td>88,19±0,04</td>
</tr>
<tr>
<td>May-13 B</td>
<td>82,6±2,1</td>
<td>2,2±0,0</td>
<td>1,9±0,1</td>
<td>11,0±0,6</td>
<td>2,2±0,1</td>
<td>90,70±0,04</td>
</tr>
</tbody>
</table>

CUADRO 14.
Mediciones biométricas y determinación del porcentaje de humedad en muestras de *C. gigas*. Zona Puerto Palito isla Chira ASOPECUPACHI, abril 2013 A.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Longitud</th>
<th>Altura</th>
<th>Diámetro</th>
<th>Peso Total</th>
<th>Peso fresco</th>
<th>Peso concha</th>
<th>Peso seco</th>
<th>Humedad %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40,8</td>
<td>73,4</td>
<td>26,1</td>
<td>32,41</td>
<td>6,38</td>
<td>24,74</td>
<td>0,67</td>
<td>89,5</td>
</tr>
<tr>
<td>2</td>
<td>42,3</td>
<td>72,3</td>
<td>21,9</td>
<td>29,15</td>
<td>4,37</td>
<td>23,37</td>
<td>0,32</td>
<td>92,7</td>
</tr>
<tr>
<td>3</td>
<td>42,4</td>
<td>67,7</td>
<td>25,7</td>
<td>26,63</td>
<td>5,10</td>
<td>19,61</td>
<td>0,51</td>
<td>90,0</td>
</tr>
<tr>
<td>4</td>
<td>39,9</td>
<td>70,1</td>
<td>21,5</td>
<td>27,63</td>
<td>4,07</td>
<td>22,03</td>
<td>0,37</td>
<td>90,9</td>
</tr>
<tr>
<td>5</td>
<td>40,4</td>
<td>67,9</td>
<td>20,5</td>
<td>34,84</td>
<td>7,63</td>
<td>25,86</td>
<td>0,86</td>
<td>88,7</td>
</tr>
<tr>
<td>6</td>
<td>47,1</td>
<td>72,3</td>
<td>20,8</td>
<td>38,22</td>
<td>7,16</td>
<td>28,16</td>
<td>0,75</td>
<td>89,5</td>
</tr>
<tr>
<td>7</td>
<td>47,5</td>
<td>69,2</td>
<td>27,0</td>
<td>28,12</td>
<td>4,44</td>
<td>21,36</td>
<td>0,54</td>
<td>87,8</td>
</tr>
<tr>
<td>8</td>
<td>42,3</td>
<td>67,9</td>
<td>23,9</td>
<td>31,77</td>
<td>5,50</td>
<td>24,34</td>
<td>0,55</td>
<td>90,0</td>
</tr>
<tr>
<td>9</td>
<td>42,2</td>
<td>73,6</td>
<td>27,1</td>
<td>36,51</td>
<td>7,95</td>
<td>26,04</td>
<td>0,74</td>
<td>90,7</td>
</tr>
<tr>
<td>10</td>
<td>43,1</td>
<td>83,7</td>
<td>25,7</td>
<td>35,87</td>
<td>7,93</td>
<td>26,33</td>
<td>0,81</td>
<td>89,8</td>
</tr>
<tr>
<td>11</td>
<td>37,2</td>
<td>82,0</td>
<td>32,1</td>
<td>36,23</td>
<td>7,19</td>
<td>26,01</td>
<td>0,75</td>
<td>89,6</td>
</tr>
<tr>
<td>12</td>
<td>40,0</td>
<td>67,8</td>
<td>27,4</td>
<td>33,75</td>
<td>5,98</td>
<td>26,01</td>
<td>0,57</td>
<td>90,5</td>
</tr>
<tr>
<td>13</td>
<td>41,0</td>
<td>71,7</td>
<td>28,9</td>
<td>33,51</td>
<td>7,55</td>
<td>24,67</td>
<td>0,90</td>
<td>88,1</td>
</tr>
<tr>
<td>14</td>
<td>47,5</td>
<td>68,2</td>
<td>28,8</td>
<td>37,96</td>
<td>6,84</td>
<td>26,80</td>
<td>0,73</td>
<td>89,3</td>
</tr>
<tr>
<td>15</td>
<td>40,7</td>
<td>79,1</td>
<td>25,7</td>
<td>36,10</td>
<td>8,27</td>
<td>26,21</td>
<td>0,86</td>
<td>89,6</td>
</tr>
</tbody>
</table>

Promedio | 89,8 | ± 1,17 |
CUADRO 15.
Mediciones biométricas y determinación del porcentaje de humedad en muestras de C. gigas. Zona Puerto Palito isla Chira ASOPECUPACHI, abril 2013 B.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Longitud</th>
<th>Altura</th>
<th>Diámetro</th>
<th>Peso Total</th>
<th>Peso fresco</th>
<th>Peso concha</th>
<th>Peso seco</th>
<th>Humedad %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39,7</td>
<td>86,7</td>
<td>28,5</td>
<td>36,89</td>
<td>7,70</td>
<td>26,26</td>
<td>0,81</td>
<td>89,5</td>
</tr>
<tr>
<td>2</td>
<td>38,7</td>
<td>81,0</td>
<td>27,5</td>
<td>37,46</td>
<td>7,62</td>
<td>28,81</td>
<td>0,59</td>
<td>92,3</td>
</tr>
<tr>
<td>3</td>
<td>45,9</td>
<td>72,2</td>
<td>30,6</td>
<td>41,10</td>
<td>10,63</td>
<td>28,63</td>
<td>1,02</td>
<td>90,4</td>
</tr>
<tr>
<td>4</td>
<td>30,6</td>
<td>73,0</td>
<td>36,1</td>
<td>31,65</td>
<td>5,14</td>
<td>25,29</td>
<td>0,39</td>
<td>92,4</td>
</tr>
<tr>
<td>5</td>
<td>45,4</td>
<td>68,2</td>
<td>28,5</td>
<td>35,43</td>
<td>5,43</td>
<td>28,60</td>
<td>0,52</td>
<td>90,4</td>
</tr>
<tr>
<td>6</td>
<td>40,6</td>
<td>74,6</td>
<td>26,4</td>
<td>32,65</td>
<td>6,43</td>
<td>24,93</td>
<td>0,51</td>
<td>92,1</td>
</tr>
<tr>
<td>7</td>
<td>40,2</td>
<td>75,6</td>
<td>24,6</td>
<td>32,94</td>
<td>7,84</td>
<td>23,60</td>
<td>1,06</td>
<td>86,5</td>
</tr>
<tr>
<td>8</td>
<td>44,1</td>
<td>77,1</td>
<td>32,7</td>
<td>46,67</td>
<td>6,43</td>
<td>38,48</td>
<td>0,60</td>
<td>90,7</td>
</tr>
<tr>
<td>9</td>
<td>39,8</td>
<td>71,1</td>
<td>35,0</td>
<td>32,73</td>
<td>6,37</td>
<td>25,02</td>
<td>0,54</td>
<td>91,5</td>
</tr>
<tr>
<td>10</td>
<td>36,9</td>
<td>75,1</td>
<td>23,4</td>
<td>25,34</td>
<td>5,41</td>
<td>18,34</td>
<td>0,41</td>
<td>92,4</td>
</tr>
<tr>
<td>11</td>
<td>41,5</td>
<td>72,7</td>
<td>25,3</td>
<td>32,85</td>
<td>5,70</td>
<td>25,53</td>
<td>0,51</td>
<td>91,1</td>
</tr>
<tr>
<td>12</td>
<td>41,4</td>
<td>71,5</td>
<td>26,5</td>
<td>34,10</td>
<td>8,78</td>
<td>23,77</td>
<td>0,78</td>
<td>91,1</td>
</tr>
<tr>
<td>13</td>
<td>41,4</td>
<td>72,9</td>
<td>27,6</td>
<td>33,87</td>
<td>8,83</td>
<td>23,46</td>
<td>0,86</td>
<td>90,3</td>
</tr>
<tr>
<td>14</td>
<td>38,0</td>
<td>72,0</td>
<td>24,4</td>
<td>30,91</td>
<td>7,18</td>
<td>22,28</td>
<td>0,77</td>
<td>89,3</td>
</tr>
<tr>
<td>15</td>
<td>34,4</td>
<td>68,8</td>
<td>30,0</td>
<td>35,18</td>
<td>8,71</td>
<td>24,25</td>
<td>0,72</td>
<td>91,7</td>
</tr>
<tr>
<td>16</td>
<td>37,5</td>
<td>69,5</td>
<td>23,6</td>
<td>29,44</td>
<td>8,10</td>
<td>19,98</td>
<td>0,83</td>
<td>89,8</td>
</tr>
<tr>
<td>17</td>
<td>42,8</td>
<td>69,0</td>
<td>26,0</td>
<td>27,84</td>
<td>5,50</td>
<td>20,48</td>
<td>0,48</td>
<td>91,3</td>
</tr>
</tbody>
</table>

Promedio 90,8 ± 1,55

CUADRO 16.
Mediciones biométricas y determinación del porcentaje de humedad en muestras de C. gigas. Zona isla Cedros ACUAMAR, mayo 2013 A.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Longitud</th>
<th>Altura</th>
<th>Diámetro</th>
<th>Peso Total</th>
<th>Peso fresco</th>
<th>Peso concha</th>
<th>Peso seco</th>
<th>Humedad %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49,4</td>
<td>66,5</td>
<td>25,5</td>
<td>38,33</td>
<td>6,21</td>
<td>29,25</td>
<td>1,02</td>
<td>83,6</td>
</tr>
<tr>
<td>2</td>
<td>55,4</td>
<td>51,2</td>
<td>28,8</td>
<td>86,29</td>
<td>11,69</td>
<td>70,07</td>
<td>1,84</td>
<td>84,3</td>
</tr>
<tr>
<td>3</td>
<td>45,4</td>
<td>73,5</td>
<td>33,2</td>
<td>52,35</td>
<td>10,76</td>
<td>39,09</td>
<td>1,80</td>
<td>83,3</td>
</tr>
<tr>
<td>4</td>
<td>42,7</td>
<td>68,3</td>
<td>25,6</td>
<td>31,75</td>
<td>5,95</td>
<td>23,87</td>
<td>1,01</td>
<td>83,0</td>
</tr>
<tr>
<td>5</td>
<td>45,5</td>
<td>75,8</td>
<td>33,8</td>
<td>48,23</td>
<td>11,37</td>
<td>33,03</td>
<td>2,15</td>
<td>81,1</td>
</tr>
<tr>
<td>6</td>
<td>51,9</td>
<td>98,6</td>
<td>29,5</td>
<td>77,84</td>
<td>12,97</td>
<td>58,88</td>
<td>1,87</td>
<td>85,6</td>
</tr>
<tr>
<td>7</td>
<td>37,9</td>
<td>71,9</td>
<td>24,0</td>
<td>31,03</td>
<td>4,66</td>
<td>23,88</td>
<td>0,65</td>
<td>86,1</td>
</tr>
<tr>
<td>8</td>
<td>49,2</td>
<td>78,1</td>
<td>28,8</td>
<td>47,29</td>
<td>9,19</td>
<td>34,59</td>
<td>1,18</td>
<td>87,2</td>
</tr>
<tr>
<td>9</td>
<td>39,5</td>
<td>71,7</td>
<td>22,9</td>
<td>32,23</td>
<td>7,48</td>
<td>21,07</td>
<td>1,31</td>
<td>82,5</td>
</tr>
<tr>
<td>10</td>
<td>38,4</td>
<td>72,0</td>
<td>27,2</td>
<td>38,97</td>
<td>6,33</td>
<td>30,08</td>
<td>1,12</td>
<td>82,3</td>
</tr>
<tr>
<td>11</td>
<td>40,0</td>
<td>84,4</td>
<td>25,7</td>
<td>44,14</td>
<td>6,12</td>
<td>33,85</td>
<td>1,16</td>
<td>81,0</td>
</tr>
<tr>
<td>12</td>
<td>42,9</td>
<td>70,0</td>
<td>26,4</td>
<td>37,36</td>
<td>6,04</td>
<td>26,32</td>
<td>0,92</td>
<td>84,8</td>
</tr>
<tr>
<td>13</td>
<td>46,2</td>
<td>74,5</td>
<td>21,3</td>
<td>35,74</td>
<td>7,90</td>
<td>24,90</td>
<td>1,56</td>
<td>80,3</td>
</tr>
<tr>
<td>14</td>
<td>39,4</td>
<td>73,1</td>
<td>24,6</td>
<td>30,56</td>
<td>6,25</td>
<td>21,91</td>
<td>1,14</td>
<td>81,8</td>
</tr>
<tr>
<td>15</td>
<td>40,3</td>
<td>68,4</td>
<td>25,9</td>
<td>32,73</td>
<td>6,70</td>
<td>23,91</td>
<td>1,24</td>
<td>81,5</td>
</tr>
</tbody>
</table>

Promedio 83,2 ± 2,02
CUADRO 17.
Mediciones biométricas y determinación del porcentaje de humedad en muestras de *C. gigas*. Zona isla Cedros ACUAMAR, mayo 2013 B.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Longitud</th>
<th>Altura</th>
<th>Diámetro</th>
<th>Peso Total</th>
<th>Peso fresco</th>
<th>Peso concha</th>
<th>Peso seco</th>
<th>Humedad %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42,1</td>
<td>73,1</td>
<td>29,2</td>
<td>32,91</td>
<td>7,79</td>
<td>30,53</td>
<td>1,56</td>
<td>80,0</td>
</tr>
<tr>
<td>2</td>
<td>42,9</td>
<td>77,5</td>
<td>29,6</td>
<td>36,93</td>
<td>7,41</td>
<td>27,35</td>
<td>0,92</td>
<td>87,6</td>
</tr>
<tr>
<td>3</td>
<td>38,7</td>
<td>68,2</td>
<td>23,9</td>
<td>29,56</td>
<td>5,05</td>
<td>21,34</td>
<td>0,80</td>
<td>84,2</td>
</tr>
<tr>
<td>4</td>
<td>38,6</td>
<td>75,2</td>
<td>24,7</td>
<td>32,30</td>
<td>6,64</td>
<td>23,92</td>
<td>1,20</td>
<td>81,9</td>
</tr>
<tr>
<td>5</td>
<td>44,7</td>
<td>75,5</td>
<td>30,7</td>
<td>45,12</td>
<td>8,44</td>
<td>33,73</td>
<td>1,58</td>
<td>81,3</td>
</tr>
<tr>
<td>6</td>
<td>44,3</td>
<td>75,3</td>
<td>25,9</td>
<td>37,16</td>
<td>5,43</td>
<td>28,37</td>
<td>0,82</td>
<td>84,9</td>
</tr>
<tr>
<td>7</td>
<td>40,0</td>
<td>67,8</td>
<td>26,0</td>
<td>36,44</td>
<td>6,08</td>
<td>27,59</td>
<td>1,09</td>
<td>82,1</td>
</tr>
<tr>
<td>8</td>
<td>41,6</td>
<td>78,8</td>
<td>23,8</td>
<td>34,37</td>
<td>7,61</td>
<td>26,68</td>
<td>1,52</td>
<td>80,0</td>
</tr>
<tr>
<td>9</td>
<td>39,8</td>
<td>71,7</td>
<td>23,1</td>
<td>32,62</td>
<td>5,86</td>
<td>24,12</td>
<td>1,15</td>
<td>80,4</td>
</tr>
<tr>
<td>10</td>
<td>42,4</td>
<td>78,9</td>
<td>24,5</td>
<td>34,59</td>
<td>6,74</td>
<td>24,89</td>
<td>1,06</td>
<td>84,3</td>
</tr>
<tr>
<td>11</td>
<td>35,5</td>
<td>80,8</td>
<td>24,1</td>
<td>41,68</td>
<td>6,81</td>
<td>32,13</td>
<td>1,16</td>
<td>83,0</td>
</tr>
<tr>
<td>12</td>
<td>40,8</td>
<td>86,8</td>
<td>23,8</td>
<td>42,54</td>
<td>8,37</td>
<td>29,22</td>
<td>1,37</td>
<td>83,6</td>
</tr>
<tr>
<td>13</td>
<td>40,1</td>
<td>88,2</td>
<td>27,5</td>
<td>50,40</td>
<td>8,24</td>
<td>36,74</td>
<td>1,41</td>
<td>82,9</td>
</tr>
<tr>
<td>14</td>
<td>40,6</td>
<td>77,0</td>
<td>24,0</td>
<td>33,85</td>
<td>6,13</td>
<td>25,21</td>
<td>1,17</td>
<td>80,9</td>
</tr>
<tr>
<td>15</td>
<td>40,5</td>
<td>65,0</td>
<td>24,5</td>
<td>27,86</td>
<td>5,42</td>
<td>19,97</td>
<td>1,00</td>
<td>81,5</td>
</tr>
<tr>
<td>16</td>
<td>37,8</td>
<td>72,8</td>
<td>22,1</td>
<td>37,27</td>
<td>5,24</td>
<td>26,46</td>
<td>0,92</td>
<td>82,4</td>
</tr>
<tr>
<td>17</td>
<td>41,1</td>
<td>74,9</td>
<td>26,8</td>
<td>34,79</td>
<td>7,82</td>
<td>27,54</td>
<td>1,36</td>
<td>82,6</td>
</tr>
<tr>
<td>18</td>
<td>42,0</td>
<td>65,1</td>
<td>30,0</td>
<td>40,34</td>
<td>4,88</td>
<td>24,35</td>
<td>0,77</td>
<td>84,2</td>
</tr>
</tbody>
</table>

Promedio 82.6 ± 2.10

II. Análisis de la vida útil de ostra *C. gigas* almacenada en frascos de vidrio a 5 °C

A. Metodología

1. **Calibración del equipo HPLC y preparación de reactivos**

Para la medición de la frescura y por ende la determinación de la vida útil en este producto acuícola, se comenzó con la calibración del equipo HPLC (cromatografía líquida de alta densidad) adquirido en el 2012 por fondos del sistema para este y otros análisis según sus aplicaciones. Para aplicar esta metodología se prepararon los reactivos correspondientes para la extracción de los nucleótidos, la neutralización de los mismos en la muestra extraída, así como el buffer de fosfatos para la fase móvil A.
Dentro de esta actividad también se hace referencia a la adquisición de un nuevo equipo por parte del proyecto, un pH-Metro PCE 228 con electrodo de pH Elmetron OSH-12-01 (figura 48) para la medición de este parámetro directamente en carne. El equipo fue calibrado y probado con soluciones buffer especiales para la calibración de pH a 4, 7 y 10. El equipo se encuentra listo para comenzar con los análisis como parámetro para la medición de la calidad de los productos de interés comercial.

![Figura 48. pH-Metro para la medición de pH en carne.](image)

2. **Curvas de calibración de nucleótidos (HPLC)**

Para la preparación de las curvas de calibración se hicieron las disoluciones madres de cada uno de los estándares de nucleótidos pesando las cantidades calculadas para que la concentración final sean de 1 mM, se anotaron los pesos exactos de cada nucleótido para calcular la concentración exacta.

Se prepararon las disoluciones patrón de los estándares de nucleótidos a partir de las disoluciones madre tomando diferentes alícuotas escalonadas y llevándolas a un volumen de 10 mL. Se corrió una curva de calibración para cada nucleótido inyectando los patrones en el equipo HPLC. Se determinó el
área de los picos cromatográficos y el tiempo de retención para cada nucleótido (calculado por el software), posteriormente se graficó área versus concentración calculada del nucleótido y se obtuvo la ecuación de la recta para el ATP y sus compuestos de degradación. En la figura 52 se presenta el cromatograma obtenido para la disolución patrón de 1 mM de la mezcla de nucleótidos estándar. En el apartado de anexos, anexo 16 se encuentran las curvas de calibración así como el protocolo completo de análisis de valor K por método HPLC ajustado y probado para este tipo de muestras.

3. **Colecta y tratamiento de la muestra**
Las muestras de 10 unidades de ostras fueron recolectadas el día 30 de julio del 2013 cuando se realizó una visita de seguimiento a la MIPYME Asociación de Cultivadores Marinos ACUAMAR en isla Cedros. Las muestras fueron transportadas vivas al laboratorio en hielera. En el laboratorio se abrieron se sacó la carne de la concha y se colocaron dos organismos por frasco y se almacenaron en refrigeración a 5 °C (figura 49). Dos de las ostras fueron muestreadas inmediatamente para obtener el tiempo cero.

![Figura 49. Muestras de carne de ostra C. gigas almacenadas en frascos de vidrio a temperatura de 5°C.](image)
Las que se almacenaron en refrigeración se muestrearon dos organismos (n=2) a los 2, 6, 9 y 13 días según la metodología de extracción de los nucleótidos de ATP y sus compuestos de degradación en musculo de pescado y mariscos, método de Ehira et al. (1970).

4. **Extracción de los nucleótidos**

Se pesaron los organismos una vez retirados de su concha en una balanza analítica con una incertidumbre de ±0.0001 g, se le agregaron 25 ml de ácido perclórico (PCA) frío al 0.6 M y se homogenizó durante 5 min. Posteriormente se Centrifugó durante 10 min a 3500 rpm a 2-4 °C. Del centrifugado se extrajo una alícuota de 10 mL del sobrenadante y se neutralizó inmediatamente usando KOH 10 y 1 M (pH 6,5-6,8) (figura 50). Se volvió a centrifugar durante 10 minutos a 3500 rpm a 2-4 °C, para que precipite el exceso de perclorato. Por último se filtró a través de papel de filtro Whatman 1 y se Aforó el filtrado a 25 mL (balón aforado) con agua destilada calidad tipo I. Se trasvasó a un recipiente plástico para almacenarlo a -30 ºC hasta el momento de su análisis. En el anexos 15 se encuentra el protocolo completo de extracción de nucleótidos para el análisis de valor K por método HPLC.

![Figura 50. Extracción de los nucleótidos de ATP y sus compuestos de degradación.](image)
5. **Determinación de ATP y sus compuestos de degradación para el cálculo de valor K, método HPLC**

Antes del análisis se filtra con filtro de jeringa de 0.45 μm para inyectar al equipo HPLC con las siguientes condiciones cromotográficas:

Columna: C 18, 5 μm, 4.6 x 250 mm
Detector: UV, DAD
Longitud de onda (λ): 254 nm
Volumen de inyección: 5 μL
Fase móvil A: Buffer de fosfatos.
Fase móvil B: Acetonitrilo grado HPLC
Programa gradiente de fase móvil

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Composición de la fase móvil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solución Buffer (A)</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
</tr>
</tbody>
</table>

Para el cálculo de la concentración del nucleótido en mmol/L entregado por el HPLC se despeja la ecuación de la recta, según corresponda para cada curva de calibración de los nucleótidos:

\[C_m = \frac{(A_m-b)}{m} \]

Dónde:
- \(C_m \) = Concentración del nucleótido en el HPLC mmol/L
- \(A_m \) = Área del nucleótido de la muestra
b = Intercepto de la curva de calibración
m = Pendiente de la curva de calibración

Para determinar la concentración total de cada nucleótido en la muestra de carne, se usó la siguiente fórmula:

\[C = \frac{Cm \times 0.01 \times PMn}{g} \]

Dónde:
C = Concentración del nucleótido en mg/g, de la muestra de carne
Cm = Concentración del nucleótido de la muestra en mmol/L obtenida de la curva de calibración
PMn = Peso molecular del nucleótido
g = Peso de la muestra de carne en gramos

Al final se remplazó cada concentración de nucleótido (C) obtenida con el cálculo anterior para determinar el porcentaje de valor K en la muestra de carne acorde con Saito et al. (1959), mediante la ecuación:

\[\text{Valor K (\%)} = \frac{(HxR + Hx)}{(ATP + ADP + AMP + IMP + HxR + Hx)} \times 100 \]

6. Determinación de pH muscular

Para la determinación de pH en la carne de ostra almacenada en refrigeración a 5 °C se utilizó el pH-Metro PCE 228 con electrodo de pH Elmetron OSH-12-01 (figura 47). Al igual que el método de ATP se midieron dos organismos (n=2) a los 0, 2, 6, 9 y 13 días. Para la medición simplemente se introdujo el electrodo en forma de cuchilla en la carne de la ostra C. gigas.
B. Resultados y discusión

1. Curvas de calibración de nucleótidos (HPLC)

Para cada uno de los nucleótidos se obtuvo la curva de calibración (figura 51) y con las mismas se obtuvo la ecuación de la recta que se utiliza para calcular la concentración de los nucleótidos en mmol/L al despejar la ecuación y obtener en el HPLC el área y los tiempos de retención de los picos cromatográficos (figura 52). En todas se obtuvieron unas buenas correlaciones lineales ($R^2 = 0.99$), con lo cual se puede decir que son aceptables para usarlas en el cálculo de la concentración de cada uno de los nucleótidos en la muestra y posteriormente la determinación del porcentaje de valor K.

Figura 51. Curva de calibración para el nucleótido ATP (Adenosin-5’-trifosfato).

Figura 52. Cromatograma obtenido para la disolución patrón de 1 mM de la mezcla de nucleótidos estándar.
2. **Determinación de ATP y sus compuestos de degradación**

Para el análisis de pérdida de frescura en la ostra almacenada en frascos de vidrio a 5°C se está a la espera de la compra de los filtros de jeringa de 0.45 μm para poder comenzar con los análisis correspondientes y obtener el gráfico de % valor K versus tiempo en días. Conforme aumentan los días de almacenamiento el % K aumenta.

Los valores obtenidos tras la aplicación del índice K según Ehira, *et al.* (1986) y Okuma, *et al.* (1992), permiten clasificar a algunas especies comerciales por ejemplo en valores bajos de 1 a 20 indica que el producto alimenticio está muy fresco apto incluso para su consumo crudo, valores que van de 20 a 40 indican que el producto se puede considerar moderadamente frescos, pero que debe cocerse antes de ser consumido, mientras que valor de 40 a más indican que el alimento esta no fresco y que ha entrado en un estado tal de descomposición que se considera no apto para el consumo humano.

Las concentraciones de estos compuestos nucleótidos, son concentraciones relativas medidas en el músculo del organismo, tomando los datos en diferentes periodos de tiempo durante el almacenamiento refrigerado o en hielo. El Valor K, es un índice de frescura relativa, basada en estos cambios autolíticos. De este modo cuanto más alto es el valor de K, menor el nivel de frescura (Huss, 1998).

3. **Determinación de pH muscular**

El comportamiento del pH en el músculo de *C. gigas* se muestra en la figura 53. Los cambios en este índice fueron mínimos, los valores permanecieron relativamente constantes a lo largo del tiempo de almacenamiento.
Inicialmente el pH fue de 5.91 ± 0.37, este valor presentó un ligero aumento el segundo día de almacenamiento. Un descenso significativo fue observado al cabo del sexto día, seguido por otro gradual hasta el noveno día de almacenamiento. El valor más bajo de pH fue registrado al día 9, con un valor de 5.72 ± 0.24, posteriormente, este comenzó a incrementarse hasta llegar a 6.85 ± 0.18 al día 13 de almacenamiento a 5 °C (figura 52). Tendencias similares sobre los cambios de pH a diferentes temperaturas de almacenamiento han sido reportadas por Tome et al. (2000) para la tilapia y por Delgado et al. (2001) para la sardina almacenada en hielo.

Según estudios realizados por Huss (1998) las variaciones de pH del tejido muscular son indicativas de la calidad del mismo, ya que cuando un organismo muere, cesan de funcionar sus sistemas de suministro de oxígeno y producción de energía. En otras palabras, el pH está relacionado directamente con la frescura del pescado. La disminución inicial de pH en la musculatura de los organismos marinos se debe a la formación de ácido láctico. Después de la muerte del animal, el glicógeno de la musculatura es hidrolizado en glucosa, que sirve como sustrato para la formación del ácido láctico (Chavarría, 2012).

En este aspecto, Kubitza (1999) indica que esa disminución del pH, retarda el desarrollo de las bacterias, aumentando la vida útil del producto almacenado. Posterior a estos días, el pH de la carne comienza a tornarse gradualmente más próximo a la neutralidad; según Tome et al. (2000) esta tendencia es el resultado de la formación de compuestos volátiles como el amoniaco, la trimetilamina y ciertas aminas producidas por vía autolítica, y por la acción bacteriana sobre aminoácidos libres, acelerando la acción de las enzimas musculares(autohidrólisis), la proliferación bacteriana y en consecuencia la degradación de la carne.
En base a estos resultados, se puede estimar el día 9 de almacenamiento como el máximo en el cual la ostra mantiene un alto grado de frescura, antes de que se dé el desarrollo bacteriano que producen la formación de compuestos básicos que neutralizan el ácido láctico formado, aumentando los valores de pH. En cuanto al límite máximo que no es apto para el consumo, se determinó que a los 13 días el pH presentó valores cercanos a 7. En el Decreto Ejecutivo No 29210-MAGMEIC-S. 28 dic. No 249 (La Gaceta, 2000) se indica que el pH no debe ser igual o superior a 7 unidades en pescado o mariscos para poder ser apto para el consumo humano (Chavarría, 2012).

Figura 53. Cambios en el valor de pH muscular de ostra (C. gigas) almacenada en refrigeración a 5°C.
III. Otras actividades realizadas

A. Coordinación y realización de talleres/visitas de seguimiento

Dentro de actividades que se realizaron en el 2013 se encuentra la ejecución de talleres en diferentes temas como lo son vida útil, valor agregado, calidad y frescura de los productos, así como la manipulación adecuada que se les debe dar para mantener su calidad e inocuidad. En los anexos 06 y 07 se encuentran las hojas de evaluación para los puntos de control en las embarcaciones de pesca artesanal y los puntos de control en los recibidores y centros de procesamiento respectivamente, las cuales se adaptaron de la norma de calidad realizada por la iniciativa del ITCR, las mismas se aplicaron en varios de estas visitas de seguimiento como punto de partida para saber la situación actual de las asociaciones y los puntos de interés, en los que hay que brindarles apoyo para que mejoren su situación en el tema.

B. Visita Inicial a los emprendimientos

Como principio a estos talleres el 22 de marzo se coordinó y realizó una visita cuyo objetivo fue establecer el perfil de entrada de los emprendimientos dirigidos por Dixon (Asociación de cultivadores de ostras del Golfo ASOCOG) y Javier (ostras Puerto Conchal) ubicadas en Colorado de Abangares (figura 54). Los primeros son una agrupación de personas de la zona que están muy interesados en montar una granja ostrícola a los cuales se les va asesorar inicialmente y acompañar durante la producción. En cuanto a la agrupación de Puerto Conchal es un grupo de pescadores que quieren comenzar a trabajar con la ostra japonesa Crassostrea gigas, sin embargo también se les va a brindar apoyo desde el punto de vista del control de calidad en la parte pesquera.
En cuanto a la futura Asociación de cultivadores de ostras del golfo ASOCOG conformada por 12 personas, como punto de partida se realizó una inspección del lugar donde tiene pensado comenzar a hacer la cosecha de las ostras y montar o construir un pequeño recibidor. El lugar es un muelle abandonado construido por Cemex. Entre las limitaciones encontradas con respecto a este sitio está la falta de agua potable así como el acceso por vía terrestre, ya que es una propiedad privada, sin embargo se nos informó que el dueño forma parte de los integrantes de la asociación. Por otra parte, dentro de las ventajas encontradas están que ya tienen muchos trámites municipales y legales adelantados, tanto es así que ya están muy prontos a obtener la cédula jurídica. Además, con esta visita se notó que los integrantes están muy anuentes a comprometerse con la asociación y comenzar a trabajar en la actividad ostrícola, así como que también cuentan con dos embarcaciones disponibles para dicha actividad.

Por su parte, la futura asociación o emprendimiento de ostras Puerto Conchal está conformada por 11 integrantes. Al igual que la anterior se visitó el lugar donde quieren montar la granja ostrícola. El lugar es un puerto pesquero conformado por una asociación de pescadores los cuales cuentan con un pequeño recibidor familiar de los mismos pescadores. Entre las limitaciones encontradas está que no tienen mucho adelanto en lo que respecta al papeleo legal como lo es la cédula jurídica para conformar la asociación, así como para sacar los permisos de la municipalidad. En cuanto a las ventajas detectadas con la visita esta que sí tienen agua potable abastecido por un acueducto del AyA, cuentan con el recibidor familiar para el trabajo ostrícola, además de que tienen a su disposición seis embarcaciones para comenzar con dicha actividad.
Como se mencionó anteriormente, este último grupo son pescadores que comercializan pescado como la corvina picuda, el camarón y pescados de pequeña talla a los cuales ellos le llaman chatarra. Debido a que también llevan a cabo dicha actividad se les aplicó una herramienta para saber la calidad y el tratamiento que se le da al producto pesquero (anexos 06 y 07). El arte de pesca utilizado es el trasmallo y entre las aspectos positivos para mantener la calidad del producto están que cuentan con carné para la manipulación de alimentos, se utiliza hielo a bordo elaborado con agua potable, almacenado en hileras independientes para dicho fin, además de que existe una separación física entre combustible, producto capturado y carnada entre otros (anexo 06).

Figura 54. Visita inicial para establecer el perfil de entrada de los emprendimientos de Cultivadores de Ostras del Golfo (ASOCOG) y ostras Puerto Conchal, ubicadas en Colorado de Abangares.

Sin embargo, dentro de los aspectos faltantes que se evidenciaron, está que las embarcaciones no cuentan con certificado veterinario de operación
vigente por el SENASA, no verifican ni cuentan con dispositivos para medir la temperatura del producto almacenado, no realiza desinfección de las embarcaciones con productos aprobados para dicho fin y por último el producto una vez eviscerado se lava con agua de mar y no con agua limpia. Estos aspectos faltantes serían los puntos importantes a tratar para que se mejore aún más la calidad del producto pesquero.

C. Taller de iniciación a la ostricultura con prácticas para incrementar el valor agregado

Se coordinó y llevo a cabo un taller sobre el valor agregado el 5 de junio del 2013 con los mismos grupos de emprendimientos dirigidos por Dixon (Asociación de cultivadores de ostras del Golfo ASOCOG) y Javier (ostras Puerto Conchal) ubicadas en Colorado de Abangares (figura 55). El taller se realizó en la municipalidad de Colorado de Abangares en colaboración con los Laboratorios de Cultivo y Reproducción de Moluscos y Control de Calidad Ambiental.

En el taller se contó con la participación de 19 personas provenientes de las dos agrupaciones. Dicha actividad consistió en una presentación sobre la tendencia del consumo de alimentos hoy en día, el significado de valor agregado, las ventajas y características, así como ejemplos de alimentos con valor agregado, los tipos de valor agregado tanto material como no material, como aumentar ese valor agregado en los productos que comercializan las MIPYMES meta incluyendo el pescado y moluscos, así como la importancia que tiene el crear e implementar una idea para transformar o darle otra apariencia a un producto que se está produciendo y comercializando, obteniendo una valor agregado que me aumenta la calidad del producto y que va a generar muchas ventajas, entre las cuales está la obtención de mayores ganancias.
Además se presentó lo correspondiente a los resultados obtenidos en los estudios realizados en el Laboratorio de Control de Calidad con respecto a la ostra *C. gigas*, entre estos están los análisis de composición nutricional, su importancia y variación a lo largo del año, así como su tiempo de vida estimado al estar a tres diferentes temperaturas y la vida útil que tiene al estar almacenada en estas tres mismas temperaturas, resultados que se encuentran anteriormente en este libro. También se dio a conocer una técnica que se ha trabajado en el laboratorio; la técnica de empaque al vacío, sus beneficio e importancia para mantener la frescura de los productos pesqueros y acuícolas aumentando la vida útil de los mismos. Método que además de darle una mejor presentación desde el punto de vista físico, también me va aumentar el tiempo para poder ser consumido el producto aumentando su calidad y por ende su valor comercial.

Figura 55. Taller inducción a la ostricultura y prácticas para incrementar el valor agregado, realizado en Colorado de Abangares.
D. Visita de seguimiento ACUAMAR en Isla Cedros

Como continuación de la capacitación brindada a las agrupaciones de ostricultores se realizó una visita de seguimiento a la granja ostrícola ACUAMAR el 30 de julio del 2013, la cual está ubicada en isla Cedros (figura 56). Con la labor realizada se pudo determinar el gran estado de avance de esta agrupación de ostricultores, esto debido a que además de cultivar la ostra también están pensando en depurarla y procesarla sacándola de la concha y dándole otro tipo de presentación que esté conforme con los requerimientos de los consumidores, en otras palabras que esté lista para consumir, sin tener que pasar por el laborioso trabajo de sacarla de su concha.

Según se nos indicó ACUAMAR ya están vendiendo su producto a Automercado y están pensando en Price Smart y Alimentos Prosalud (Sardimar). Por otra parte, ya cuentan con los permisos para la construcción de una planta tipo plataforma sobre el agua para la depuración y procesamiento de las ostras, se examinaron los planos y se hicieron recomendaciones sobre la distribución (anexo 08), se recomendó redistribuir la planta para que la bodega y el cuarto de máquinas estuvieran lo más alejado posible de las zonas de desdoble/selección y empaque/almacenaje, lo anterior debido a una posible contaminación cruzada.

Además se recomendó sobre el tipo de material que estará en contacto con el alimento, ejemplo el acero inoxidable por las condiciones saladas siempre tendería a oxidarse, se recomendó fibra de vidrio. En cuanto a los nuevos producto se hizo ver la disponibilidad del laboratorio para el análisis de la vida útil de la ostra desconchada en diferentes presentaciones; ceviche o en frascos de vidrio con lo que estarían aplicando lo aprendido en las
capacitaciones para lograr dar el paso y ofertar nuevos productos de calidad con un gran valor agregado.

Figura 56. Visita de seguimiento realizada a ACUAMAR, isla Cedros.
IV. Conclusiones

La humedad fue el componente porcentual con mayor presencia en el organismo, siendo mayor para la zona de Puerto Palito isla Chira. Por su parte, el porcentaje de proteínas fue el segundo componente más abundante en ambas zonas con un valores relativamente bajos de 6.4±0.1 % y 5.8±0.1 para la zona de Puerto Palito isla Chira, en comparación a las ostras de isla Cedros en donde se obtuvieron valores de 11.0±0.6 % y 10.7±0.2.

En cuanto al valor calórico también se obtuvo un mayor contenido para esta zona de isla Cedros presentando un máximo y mínimo de 90.70±0.04 y 88.19±0.04 Kcal en 100 gramos de carne. En base a estos resultados se puede aseverar que el contenido proteico y el valor calórico son inversamente proporcionales a la humedad.

En cuanto a las determinaciones de medición de la calidad en los productos pesqueros y acuícolas, el equipo HPLC así como el nuevo pH-metro adquirido se encuentran calibrados y listos para comenzar con los análisis.

Según la determinación de pH en la ostra se obtuvo que el noveno día es el máximo para que la ostra mantenga un pH por debajo de 7, por el contrario al día 13 de almacenamiento a 5 °C el pH tiende a subir cercano a 7 por lo cual la carne de este animal se vuelve no apta para el consumo.

Con la visita inicial a los grupos emprendedores que van a entrar a formar sus granja ostrícolas se pudo determinar las condiciones de sitios que tienen para comenzar con la actividad, así como las ventajas y desventajas que presentan y cuál es el grado de avance en cuanto a la conformación de las
asociaciones, se espera que estas nuevas o futuras MIPYMES comiencen a formar parte de proyecto del Plan Estratégico Interuniversitario Regional.

Con el taller realizado se evidencio el grado de interés de las agrupaciones de comenzar a producir ostras debido a la cantidad de participantes y a la interacción con preguntas que se dieron durante la realización del mismo, así como las ideas que tienen y mostraron con respecto a la implementación de un valor agregado en sus futuros productos.

Con la visita de seguimiento realizada se pudo determinar al gran estado de avance de los ostricultores de ACUAMAR, los cuales ya cuentan con los permisos para la construcción de una planta para la depuración y procesamiento de las ostras, ser hicieron recomendaciones sobre la distribución, además se hizo ver la disponibilidad del laboratorio para el análisis de la vida útil de nuevas presentaciones de la ostra desconchada.
Bibliografía

Ehira, S., Uchiyama H. (1986). Determination of fish freshness using the K value and comments on some other biochemical change in relation to freshness.185 p.

ANEXOS

Anexo 01

Hoja para evaluación sensorial QIM para ostra y piangua

<table>
<thead>
<tr>
<th>PARÁMETROS</th>
<th>CARACTERÍSTICAS</th>
<th>PUNTUACIÓN</th>
<th>COMENTARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valvas</td>
<td>Cerradas, de estar abiertas deben cerrarse al contacto o al golpearlas. Enteras</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semianiobiertas, no cierran al contacto.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abiertas con algo de flexibilidad</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abiertas y con tendencia a separarse al manipularse</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Líquido intervalval</td>
<td>Cristalino y sin olor</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opaco y viscosa</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poco líquido, viscoso y con olor</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin líquido</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Olor</td>
<td>Característico</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A mar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ligeramente ácido</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Francamente ácido/desagradable</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Músculo</td>
<td>Húmedo, adherido a las valvas y de aspecto esponjoso. Color amarillento claro</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Húmedo, adherido a las valvas, mediante el color</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semihúmedo, se suelta fácilmente de las valvas, se tornan amarillos o blancuzcos. Olor ligeramente ácidos</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desprendidos, pérdida de colores característicos, olor ácido/desagradable</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pie</td>
<td>Sensible al movimiento. Color anaranjado</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin movimiento, mantiene color</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seco, pérdida de color, amarillo claro</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 0-14
Anexo 02

Características de máquinas empacadoras al vacío mostradas por la empresa Ruxi SA

Selladora de vacío DZ300

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje</td>
<td>110V-60Hz</td>
</tr>
<tr>
<td>Potencia</td>
<td>200W</td>
</tr>
<tr>
<td>Peso</td>
<td>35 Kg.</td>
</tr>
<tr>
<td>Potencia vacío</td>
<td>370W</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>480x330x360mm</td>
</tr>
<tr>
<td>Sellado</td>
<td>10x14x52mm</td>
</tr>
<tr>
<td>Carga de aire bomba</td>
<td>10m³/h</td>
</tr>
<tr>
<td>Operación</td>
<td>Semiautomática</td>
</tr>
</tbody>
</table>

Servicio de reparación y stock permanente de repuestos

Selladora de vacío DZ400

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltaje</td>
<td>110V-60Hz</td>
</tr>
<tr>
<td>Potencia</td>
<td>500W</td>
</tr>
<tr>
<td>Peso</td>
<td>120 Kg.</td>
</tr>
<tr>
<td>Presión vacío</td>
<td>1 KPa</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>580x500x1050mm</td>
</tr>
<tr>
<td>Sellado</td>
<td>440x200x55mm</td>
</tr>
<tr>
<td>Operación</td>
<td>Semiautomática</td>
</tr>
</tbody>
</table>

Servicio de reparación y stock permanente de repuestos
Anexo 03

Hoja para evaluación sensorial QIM para filete de corvina

<table>
<thead>
<tr>
<th>PARAMETROS</th>
<th>CARACTERISTICAS</th>
<th>PUNTUACIÓN</th>
<th>COMENTARIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olor</td>
<td>Sin olor</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pescado, mar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuerte olor a pescado</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muy fuerte, amoniac</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Textura</td>
<td>Normal</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poco baboso</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baboso</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muy baboso</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dureza</td>
<td>Normal, firme, elástica</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poco suave</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suave</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muy suave</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Normal, blanco, rosáceo</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poco pálido</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pálido poco verdoso</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verdoso</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 0-12
Características básicas de las instalaciones de un puesto de recibo de pescado y marisco

Las instalaciones

Los pisos, las paredes, y los techos deben ser resistentes, estar limpios y ser lavables y de fácil limpieza (superficie no porosa e impermeable). No deberá presentar grietas, deterioro o irregularidades que permitan que el agua se acumule y forme charcos. No deben utilizarse la madera, ya que esta es una fuente de contaminación y es prácticamente imposible de higienizar, transmitiendo al producto malos olores y microorganismos contaminantes. El piso deberá estar diseñado con una ligera inclinación (pendiente de 2 %) que termite el correcto desagüe a las alcantarillas.

Los baños no deben tener acceso directo a las zonas de proceso, deben contar con inodoros, papel higiénico, lavamanos y jabón, así como un recipiente para los residuos.

Exhibidores

Es aconsejable utilizar mostradores con un drenaje adecuado, poner un lecho de hielo, sobre este el pescado y por encima rociar el producto con hielo. De esta manera el producto se mantiene exhibido, bien presentado y en buenas condiciones de refrigeración. El pescado y los productos pesqueros deben mantenerse en capas finas.
Anexo 05

Croquis de diseño del puesto de recibo para la Asociación de Pescadores de Puerto Níspero
Anexo 06

Plegable de logros 2010, Laboratorio de Control de Calidad

Objetivo Específico:
Desarrollar prácticas para incrementar el valor agregado de los productos marinos, en términos de control de calidad, que comercializan las PYMES meta, así como los servicios que puedan ofrecer algunas de estas PYMES.

PYMES impactadas:
- Asociación de Mujeres Trabajadoras del Marisco de Chones.
- Asociación de Mujeres de Punta Morales.
- Asociación de Proyectos Pesqueros de Costa de Pájaros

Fig. 1. Resultados de análisis sensorial para determinar frescura, realizado a las muestras de piangua colectadas en Chones y almacenadas en refrigeración a 8°C.

Logros alcanzados:
- Análisis de vida útil en piangua y evaluación de la perdida frescura a diferentes temperaturas.
- Análisis de composición nutricional en piangua.
- Adquisición de máquina de empaque vacío para el desarrollo de nuevos productos.
- Socialización de resultados.
- 1 Visita de seguimiento.

Cristian Fonseca / Fabián Chavarría
Laboratorio de Control de Calidad
Estación de Biología Marina
Escuela de Ciencias Biológicas
Universidad Nacional
Anexo 06
Hoja de evaluación para los puntos de control en las embarcaciones de pesca artesanal

Fecha:

Nombre del grupo u organización:

Ubicación:

Nombre de contacto:

Número de contacto:

<table>
<thead>
<tr>
<th>Puntos de Control Embarcación Personal</th>
<th>SÍ</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ¿Las embarcaciones cuentan con el Certificado Veterinario de Operación vigente del SENASA?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ¿Cuál o cuáles artes de pesca utiliza?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzuelo</td>
<td>Trasmallo</td>
<td>Línea</td>
</tr>
<tr>
<td>3 ¿Utiliza hielo a bordo?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 ¿Se verifica la temperatura del producto almacenado?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 ¿Cuenta con dispositivo automático de toma de temperatura?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 ¿Cuenta con hileras independientes para almacenar carnada, hielo y producto?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 ¿El hielo es elaborado con agua potable o limpia?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 ¿El agua utilizada es potable y/o limpia?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 ¿Las superficies donde se manipula el producto son lavables?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ¿Los productos usados para la limpieza y desinfección son aprobados para dicho fin?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 ¿Existe una separación física entre combustible, producto de captura, carnada, productos de limpieza?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 ¿Cuándo no están en uso, las superficies de contacto con el producto se mantienen limpias?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 ¿Las áreas de la embarcación se mantienen libres de plagas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 ¿Los alimentos para la tripulación que requieren refrigeración, se mantienen separados del producto capturado y de la carnada?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 ¿Existen mecanismos para minimizar el riesgo de infestación de plagas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 ¿El personal cuenta con carné para manipular alimentos?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 ¿El personal utiliza vestimenta adecuada mientras manipula su captura?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 ¿Los artes de pesca se encuentran en buen estado?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 ¿Se minimiza el tiempo entre la captura y el almacenamiento?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 ¿Se almacena el producto bajo condiciones que mantengan su calidad?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 ¿El producto es eviscerado en la embarcación inmediatamente es capturado?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 ¿Una vez eviscerado el producto se lava con agua limpia (no de mar)?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Responsable de llenar formulario:
Anexo 07

Hoja de evaluación para los puntos de control en los recibidores y centros de procesamiento

Fecha:

Nombre del grupo u organización:

Ubicación:

Nombre de contacto:

Número de contacto:

<table>
<thead>
<tr>
<th>Puntos de Control Recibidor/Procesamiento</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ¿Cuenta con aprobación de SENASA vigente?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 ¿Se aplica una verificación de producto a su ingreso y se mantiene registro de la misma?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 ¿El registro de temperatura se encuentra actualizado?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 ¿Las instalaciones de proceso se encuentran en buen estado?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 ¿Los equipos e implementos con los que se manipula el producto, están diseñados de manera que permita su lavado y construidos con materiales lavables?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 El equipo y utensilios que se utilizan están limpios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 ¿Las superficies de contacto con el producto se mantienen limpias?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 ¿Los alrededores del local se mantienen libres de sitios propicios para la proliferación de plagas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 ¿El personal que toca el producto, no manipula el dinero?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Se cuenta con vestimenta, botas y guantes especiales para manipula el producto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 ¿Las superficies donde se manipula el producto son lavables?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 ¿Cuándo no están en uso, las superficies de contacto con el producto se mantienen limpias?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 ¿El personal cuenta con carné para manipular alimentos?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 ¿Se almacena el producto bajo condiciones que mantengan su calidad?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 ¿Los productos usados para la limpieza y desinfección son aprobados para dicho fin?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Responsable de llenar formulario:
Anexo 08

Croquis de una planta de depuración y procesado de ostras, presentado por ACUAMAR en la visita de seguimiento
Anexo 09

Brochure 1

Propósitos

Qué les ayuda a mejorar, y cómo les beneficia

Lógica de intervención

Enviar el producto en el estado adecuado.

Objetivo específico

Formar a la población a las ventajas que les ofrece el Proyecto.

Resultados

Incremente la competitividad de las PME.

Se les imparte el manejo de los productos pesqueros y de cultivo.

Más adelante, se hará en la UNAN y en las áreas de gestión de la conservación.

Actividades

Se forman en la conservación de los productos pesqueros y de cultivo.

Ejemplo de los manuales utilizados durante las capacitaciones.
Anexo 10

Brochure 2

Propósitos

Que los NYPYME conocen e implementen prácticas eficaces para obtener productos marinos inocuos y con alto rendimiento de calidad al consumidor

Lógicas de intervención

Generar propuestas reales para que los NYPYME implementen prácticas que avancen la salud a inocuidad de los productos marinos.

Objetivo Específico

Dotar y capacitar a los NYPYME en el equipo e infraestructura básica para la conservación de la frescura e inocuidad del producto durante el transporte.

META ALCANZADA

Implementar técnicas que aseguren la frescura e inocuidad de los productos marinos comercializados por las NYPYME citadas.

Indicadores de éxito

Designar uno modelo de infraestructura y equipos básicos que deban ser en los NYPYME para mantener la frescura e inocuidad del producto durante el almacenamiento y transporte de productos marinos.

Actividades

- Cuencas, enfocadas en la conservación de la frescura e inocuidad, la manipulación y presentación de producto final
- Evaluación de las prácticas y maniobras de ensayo mediante análisis de calidad y frescura de los productos desarrollados.
- Desarrollo de productos envasados al vacío.
- Diseño de una embarcación provista de un área para el mantenimiento y transporte del producto, en óptimas condiciones.

Acciones

- Control de Calidad e inocuidad alimentaria.
- Presentación del producto final.
Anexo 11

Composición nutricional de la ostra *C. gigas* según zona de estudio

<table>
<thead>
<tr>
<th>Componente nutricional</th>
<th>Punta Morales</th>
<th>Punta Cuchillo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad (%)</td>
<td>84.2</td>
<td>84.6</td>
</tr>
<tr>
<td>Ceniza/minerales (%)</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Lípidos/grasa (%)</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Proteínas (%)</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td>Carbohidratos (%)</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Valor Calórico (Kcal/100 g)</td>
<td>83.55</td>
<td>78.92</td>
</tr>
</tbody>
</table>

Anexo 12

Determinación del tiempo que dura en morir la ostra *C. gigas* al estar almacenada a tres diferentes temperaturas

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>Duración (Horas)</th>
<th>Duración (Días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 °C</td>
<td>132</td>
<td>6</td>
</tr>
<tr>
<td>8 °C</td>
<td>32</td>
<td>1.3</td>
</tr>
<tr>
<td>2-4 °C (hielo)</td>
<td>27</td>
<td>1</td>
</tr>
</tbody>
</table>
Anexo 13

Composición nutricional de ostra Japonesa *C. gigas* y piangua *A. tuberculosa*

<table>
<thead>
<tr>
<th>Componente nutricional</th>
<th>Ostra Japonesa</th>
<th>Piangua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad (%)</td>
<td>84.6</td>
<td>83.5</td>
</tr>
<tr>
<td>Minerales (%)</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Grasa (%)</td>
<td>1.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Proteínas (%)</td>
<td>8.5</td>
<td>10.1</td>
</tr>
<tr>
<td>Carbohidratos (%)</td>
<td>3.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Valor calórico (Kcal/100g)</td>
<td>78.9</td>
<td>85.3</td>
</tr>
</tbody>
</table>
Anexo 14

Activos adquiridos durante el 2010-2011 en el Laboratorio de Control de Calidad por parte del proyecto.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Marca</th>
<th>Modelo</th>
<th>Especificaciones</th>
<th>Nº de Activo</th>
<th>Foto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selladora de vacío</td>
<td>Brother</td>
<td>DZ0400 N/B</td>
<td>Operación semiautomática, voltaje 220 V, potencia 500 W, peso 120 Kg, presión de vacío 1 KPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanza</td>
<td>AND</td>
<td>GX-2000</td>
<td>Peso máximo 2100 g, peso mínimo 0,5 g, resolución 0,01 g, repetibilidad 0,01 g, linealidad ±0,02 g</td>
<td>N00123333</td>
<td></td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓN

Al morir el pez se produce la degradación del ATP en el músculo del pescado debido a una serie de reacciones enzimáticas, produciéndose una serie de compuestos tales como ADP, AMP, IMP, Inosina e Hipoxantina.

El ATP de la carne de pescado se descompone de la siguiente manera después de la muerte.

\[
\begin{align*}
\text{ATP} & \xrightarrow{\text{ATPasa}} \text{ADP} \quad \text{miokinasa (myokinase)} \quad \text{AMP (ácido adenilico)} \\
\text{AMP deaminasa} & \quad \text{IMP fosfotasa} \\
\text{HxR (inosina)} & \quad \text{Hx (Hipoxantina)} \\
\text{Nucleósido hidrolasa} & \quad \text{Nucleósido fosforilasa}
\end{align*}
\]

El proceso de degradación es muy rápido, excepto la formación de hipoxantina. La medición de estos compuestos da una evaluación del nivel de frescura del pescado.

2. DEFINICIONES, ABREVIATURAS Y SIGLAS

ATP: Adenosin-5´-trifosfato
ADP: Adenosin-5´-difosfato
AMP: Adenosin-5´-monofosfato
IMP: Monofosfato de Inosina
HxR: Inosina
Hx: Hipoxantina
PCA: Ácido perclórico

3. FUNDAMENTO TEÓRICO

Tanto el ATP como sus compuestos de degradación (fosforilados y no fosforilados) son separados mediante una columna empacada con una resina de intercambio aniónico.
Los compuestos de degradación presentes en el extracto de carne, son adicionados a una columna de resina de intercambio aniónico, generándose diferentes interacciones iónicas entre la resina y estos compuestos. Luego se eluyen con dos soluciones (A y E) que presentan una diferente concentración de hidrógenos (H⁺) y NaCl, los cuales separan a los compuestos en el siguiente orden:

Sol. A: no fosforilados
 - Hipoxantina (Hx), inosina (HxR)

Sol. E: fosforilados
 - Monofosfato de inosina (IMP), AMP, ADP y ATP

4. **MATERIALES, EQUIPO, REACTIVOS Y SOLUCIONES**
 4.1. **Materiales**
 4.1.1. Bisturí
 4.1.2. Tabla de picar
 4.1.3. Papel medidor de pH; TB (1,4 ~ 3,0 y 8,0 ~ 9,6) y BTB (6,2 ~ 7,8)
 4.1.4. Pinzas
 4.1.5. Balón aforado 25, 50 y 100 mL
 4.1.6. Beaker 30, 50, 250, 500 y 1000 mL
 4.1.7. Embudo Buchner
 4.1.8. Kitasato
 4.1.9. Tubos de ensayo
 4.1.10. Goteros
 4.2. **Equipos**
 4.2.1. Homogenizador
 4.2.2. Espectrofotómetro
 4.2.3. Columna cromatográfica (pequeña)
 4.2.4. Centrífuga
 4.2.5. Colector de fracciones
 4.2.6. Vortex
 4.2.7. Balanza
 4.3. **Reactivos y soluciones**
 4.3.1. Ácido perclórico (PCA) 10 y 5 %
 4.3.2. Hidróxido de potasio (KOH) 1 y 10 M
 4.3.3. Resina Dewex 1 x 4 Cl (200-400 mesh)
 4.3.4. Acetona
 4.3.5. Hidróxido de sodio (NaOH) 1 M
 4.3.6. Ácido clorhídrico (HCl) 1 M
 4.3.7. Solución A: HCl 0,001 M
 4.3.8. Solución E: HCl 0,01 M, NaCl 0,6 M
5. PROCEDIMIENTO

a. PREPARACION DEL ESTANDAR

5.1.1. Se especifican a continuación los valores a tomar en cuenta para la preparación de los estándares a partir de las soluciones puras de los nucleótidos:

<table>
<thead>
<tr>
<th>Nucleótido</th>
<th>Peso molecular (g/mol)</th>
<th>Concentración a preparar</th>
<th>Volumen (mL)</th>
<th>Peso a tomar (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>551,1</td>
<td>5mM</td>
<td>50</td>
<td>0,1378</td>
</tr>
<tr>
<td>ADP</td>
<td>427,2</td>
<td>5mM</td>
<td>50</td>
<td>0,1068</td>
</tr>
<tr>
<td>AMP</td>
<td>347,2</td>
<td>5mM</td>
<td>50</td>
<td>0,0868</td>
</tr>
<tr>
<td>IMP</td>
<td>392,18</td>
<td>5mM</td>
<td>50</td>
<td>0,0980</td>
</tr>
<tr>
<td>Hx (Hipoxantina)</td>
<td>268,23</td>
<td>5mM</td>
<td>50</td>
<td>0,0670</td>
</tr>
<tr>
<td>HxR (Inosina)</td>
<td>136,11</td>
<td>5mM</td>
<td>50</td>
<td>0,0340</td>
</tr>
</tbody>
</table>

Calcular el peso a tomar de cada nucleótido

5mM en 50ml

5mM = 5mmol/L
5mM = 5mmol/1000mL
5mM = 5 x 10^-3 mol/1000mL

5 x 10^-3mol/1000mL * 50mL = 2,5 x 10^-4mol

Ejemplo:

ATP \[\rightarrow \] 551,1 g/mol * 2,5 x 10^-4 mol = 0,1378g

5.1.2. Tomar la muestra del nucleótido y disolver en 25mL de agua destilada. Se ajusta el pH a 6,5 con NaOH 1M.

5.1.3. Una vez alcanzado el pH, colocar la mezcla en un balón aforado de 50mL y aforar con agua destilada.

5.1.4. Para la preparación del estándar que se utilizará en la determinación del porcentaje de recuperación de la resina, se toma 1mL de cada solución de los nucleótidos a una concentración de 5mM.

5.1.5. Teniendo una solución de 6mL de nucleótidos se le agrega 24mL de agua destilada, para tener la solución estándar lista. A esta solución se le mide la absorbancia a 254nm para determinar los nmol en solución.

5.2 PREPARACION DE REACTIVOS Y ELUENTES

5.2.1. NaOH 1M \[\rightarrow \] 40g de NaOH en 1L de agua destilada
5.2.2. HCl 1M → 83,3mL de HCl concentrado en 1L de agua destilada

5.2.3. HCl 0,1M → 8,3mL de HCl concentrado en 1L de agua destilada

i. Eluente A → 1mL HCl 1M + 999mL de agua destilada; pH = 3

ii. Eluente E → 10mL HCl 1M + 990mL de agua destilada + 35,052g de NaCl; pH = 2

iii. PCA 10% → 140,8mL PCA a 71% se aforan con agua destilada a un volumen de 1L

iv. PCA 5% → 70,4mL PCA a 71% se aforan con agua destilada a un volumen de 1L

v. KOH 10M → 56,11g KOH en 100mL de agua destilada

vi. KOH 1M → 5,61g KOH en 100mL de agua destilada

vii. NH₄OH → 19mL NH₃ en 500mL de agua destilada

5.3. PREPARACIÓN DE LA RESINA

5.3.1. En un beaker de 1000 mL agregar 50 g de resina Doler 1 x 4 Cl (200-400 mesh) y lavar con 200 a 300 mL de acetona. Dejar reposar 20 minutos.

5.3.2. Transcurridos los 20 min, verter la mezcla en el embudo de buchner y filtrar, para eliminar las acetonas, realizar lavados con abundante agua destilada y filtrar.

5.3.3. Colocar la resina en un beaker de 1000 mL y agregar de 500 a 600 mL de NaOH 1 M y se agita, dejar reposar durante 30 a 40 min.

5.3.4. Remover el NaOH por filtración, lavando con abundante agua hasta pH neutro (medición con papel tornasol).

5.3.5. Colocar la resina en un beaker de 1000 mL y agregar de 500 a 600 mL de HCl 1 M, y se deja reposar por 30 a 40 minutos.

5.3.6. Remover el HCl por filtración y realizando lavados con abundante agua destilada; hasta obtener pH neutro (medición con papel tornasol).

5.3.7. Guardar en refrigeración. Las resinas que se utilizaron ya una vez se pueden volver a utilizar si se repite lo expuesto arriba.

5.4. PREPARACIÓN DE LA COLUMNA

8.4.1. Se utiliza una columna de 1 cm de diámetro y 21 cm de longitud, que además se une a un embudo de adición que lleva en la parte superior una bomba. El filtro debe de ser lo más suelto posible. La columna se puede hacer utilizando tubos de vidrio, y en lugar de utilizar un filtro se puede colocar lana de vidrio adentro. En cualquier de los casos es mucho mejor
tener uno 30 o 40 de estos cuando se va a realizar mediciones de varias pruebas, porque es más eficaz.

8.4.2. Añadir la resina activada hasta que llegue a los 5 cm aprox.
8.4.3. Para que no le entre aire a la resina se le agrega agua destilada, si se le mete aire, se revuelve con una varilla de vidrio y se le vuelve a agregar agua destilada.

5.5. EXTRACCIÓN DE LA MUESTRA

5.5.1. En un tubo de centrífuga, agregar 1.5 g de carne de pescado y 5 mL de PCA de 10 % (conservado en refrigeración y mantenido en enfriamiento con hielo). Se tritura bien utilizando un palo de vidrio.

5.5.2. Centrifugar a 3500rpm durante 4min, decantar y guardar el líquido en otro tubo. El líquido se neutraliza con KOH 10M hasta pH aproximado de 2,8-3,0 (utilizar papel pH TB); se continua la neutralización con KOH 1M hasta pH de 6,6-7,0 (utilizar papel pH BTB).

5.5.3. En caso de que el pH se vuelva alcalino, este se puede bajar usando PCA 10%.

5.5.4. Para extraer los cristales de perclorato se centrifuga nuevamente y se decanta. El líquido se afora a 10mL con PCA 5%. Confirmar pH en 6,6-7,0.

5.5.5. Los cristales de perclorato de potasio se extraen mediante la centrifuga. La muestra se conserva en congelamiento – 30 °C. Si se conserva en refrigeración normal existe la posibilidad de que sufra cambios, por lo que se debe de conservar en congelación.

5.5.6. No se debe de utilizar el TCA para eliminar las proteínas, es mejor usar el PCA ya que el primero tiene una particularidad, la cual es que absorbe los rayos ultra violeta y puede perjudicar la medición con el espectrofotómetro. Sería mucho más útil contar con un centrifuga en el cual se puedan utilizar varios tubos de 10 mL. En un día es posible realizar unas 40 extracciones de muestras.

5.6. LIQUIDO DISOLVENTE DE SEPARACIÓN

5.6.1. Se toman 3 mL de líquido de muestra de carne de pescado en un beaker de 30 mL (si es uno que se ha tenido guardado en -20 °C se debe de descongelar y hacer que las cristalizaciones de perclorato de potasio que se habían producido queden uniformes).

5.6.2. Verificar pH. Se regula pH a 9,4 con agua amoniaca 0,5M (hidróxido de amonio NH₄OH) y se vierte en la columna.

5.6.3. Realizar un lavado al beaker con 20mL de agua destilada y verter en la columna. Con esto se eliminan las sustancias que absorben las partes ultravioletas que no se adhieren a la resina.

5.6.4. Después de verter los 20mL de agua destilada, se vierte el Eluente A y se toman muestras de 4mL del líquido resultante en cada tubo. A continuación se realiza la misma operación con el Eluente E, tomando de la misma manera 4mL en los tubos (el eluente E arrastra en los primeros 3 tubos).
5.6.5. Medir las absorbancias a 254nm de cada Eluente (se utiliza agua destilada como blanco en el espectrofotómetro y se debe medir la absorbancia de cada uno de los eluentes puros).

A – Disolución: 0,001 M HCl (líquido disolvente de separación de HxR + Hx)
B – Disolución: 0,001 M HCl, 0.02 M NaCl (líquido disolvente de separación de AMP)
C – Disolución: 0,0013 M HCl, 0,028M NaCl (líquido disolvente de separación de IMP)
D – Disolución: 0,0032 M HCl, 0,063 M NaCl(líquido disolvente de separación de ADP)
E – Disolución: 0,001 M HCl, 0,6 M NaCl (líquido disolvente de separación de ATP)

*Sin embargo para la medición de solo el valor K se utiliza la disolución A y E.

5.7. CALCULO

Se prepara la solución estándar de los compuestos químicos relacionados con el ATP (ATP, ADP, AMP, IMP, HxR, Hx), se diluye esa solución para crear la curva estándar. Utilizando la curva que se ha creado, se calcula la cantidad de moles de los compuestos químicos relacionados con el ATP.

$$\text{Valor K} \% = \frac{(\text{HxR} + \text{Hx}) \times \text{Vol.}}{(\text{ATP} + \text{ADP} + \text{AMP} + \text{IMP}) + (\text{HxR} + \text{Hx})} \times 100$$

Entonces:

Valor K (%) = absorbancia a 254 nm, eluente A(solo aquellos que den en la curva) x 100
Absorbancia a 254 nm, eluente E(solo aquellos que den en la curva)

Es decir:

$$\text{Valor K} \% = \frac{[\text{Eluente A}]}{[\text{Eluente E}] + [\text{Eluente A}]} \times 100$$

$$\text{Eluente A} \quad \frac{\text{Abs A} - 0.00029 \times \text{Vol}}{0.0104}$$

$$\text{Eluente E} \quad \frac{\text{Abs E} - 0.0011 \times \text{Vol}}{0.01203}$$

* Solo se toman en cuenta aquellas absorbancias superiores a 0,100.

Se construye una curva de calibración, con disoluciones estándares de los nucleótidos; concentración vs absorbancia a 254 nm.

Utilizar la ecuación $y = mx + b$.

Donde:
y = absorbancia
m = pendiente de la curva
x = concentración
b = intercepto en el eje y.

Sustituir los valores obtenidos experimentalmente, despejar el valor de x (concentración).
1. INTRODUCCIÓN

Al morir el pez se produce la degradación del ATP en el músculo del pescado debido a una serie de reacciones enzimáticas, produciéndose una serie de compuestos tales como ADP, AMP, IMP, Inosina e Hipoxantina.

El ATP de la carne de pescado se descompone de la siguiente manera después de la muerte.

\[
\begin{align*}
\text{ATPasa} & \quad \text{mioquinasa (myokinase)} \\
\text{ATP} & \quad \text{ADP} & \quad \text{AMP (ácido adenilico)} \\
\text{AMP deaminasa} & \quad \text{IMP fosfotasa} \\
\text{IMP} & \quad \text{HxR (inosina)} & \quad \text{Hx (Hipoxantina)}
\end{align*}
\]

El proceso de degradación es muy rápido, excepto la formación de hipoxantina. La medición de esto compuestos da una evaluación del nivel de frescura del pescado.

2. DEFINICIONES, ABREVIATURAS Y SIGLAS

ATP: Adenosin-5´-trifosfato
ADP: Adenosin-5´-difosfato
AMP: Adenosin-5´-monofosfato
IMP: Monofosfato de Inosina
HxR: Inosina
Hx. Hipoxantina
PCA: Ácido perclórico
3. MATERIALES, EQUIPO, REACTIVOS Y DISOLUCIONES

4.1. MATERIALES

- Bisturí
- Cuchillo
- Tabla de picar
- Papel medidor de pH; TB (1,4 ~ 3,0 y 8,0 ~ 9,6) y BTB (6,2 ~ 7,8)
- Pinzas
- Balón aforado 10, 25, 500 y 1000 mL
- Beaker 50, 100, 250, 1000 y 2000 mL
- Probeta 25 mL
- Pipeta 10 mL
- Tubos de centrífuga con tapa rosca de 50 mL
- Embudo
- Varilla de vidrio
- Papel de filtro N° 1
- Kitasato
- Filtros de jeringa
- Filtro de membrana de 0.45- µm
- Goteros
- Jeringa inyección HPLC

4.2. EQUIPOS

- HPLC con detector UV de longitud de onda variable
- Homogenizador
- Centrífuga en frío
- Vortex
- Balanza analítica 0.0001 g

3.3. REACTIVOS Y DISOLUCIONES

3.3.1. Ácido perclórico (PCA) 0.6 M. Medir el volumen de 52 mL de PCA 69-72%, disolver y aforar a 1000 mL de agua destilada calidad tipo I

3.3.2. Hidróxido de potasio (KOH) 0.1 M. Pesar 0.57 g de KOH, disolver y aforar a 100 mL de agua destilada calidad tipo I

3.3.3. Hidróxido de potasio (KOH) 1 M. Pesar 5.70 g de KOH, disolver y aforar a 100 mL de agua destilada calidad tipo I

3.3.4. Hidróxido de potasio (KOH) 10 M. Pesar 57.00 g de KOH, disolver y aforar a 100 mL de agua destilada calidad tipo I

3.3.5. Buffer de fosfatos (KH$_2$PO$_4$/ K$_2$HPO$_4$) = (0.04M/0.06M). Pesar 5.45 g de KH$_2$PO$_4$ disolver y aforar a 1000 mL con agua destilada calidad tipo I. Pesar 10.46 g de K$_2$HPO$_4$ disolver y aforar a 1000 mL con agua destilada calidad tipo I. Mezclar las dos soluciones, regular el pH con solución de hidróxido de potasio 0.1 M y filtrar con filtro de 0.45- µm.
4. CURVAS DE CALIBRACIÓN DE LOS NUCLEÓTIDOS

4.1. PREPARACIÓN DE LAS DISOLUCIONES MADRE DE LOS ESTÁNDAR DE NUCLEÓTIDOS A 1 mM

Nota: Anotar los pesos exactos de cada nucleótido para calcular la concentración exacta en mmol/L.

4.1.1. Disolución madre ATP
Pesar aprox. 0.0138 g del estándar y aforarlo a 25 mL con agua destilada calidad tipo I

4.1.2. Disolución madre ADP
Pesar aprox. 0.0107 g del estándar y aforarlo a 25 mL con agua destilada calidad tipo I

4.1.3. Disolución madre AMP
Pesar aprox. 0.0087 g del estándar y aforarlo a 25 mL con agua destilada calidad tipo I

4.1.4. Disolución madre IMP
Pesar aprox. 0.0098 g del estándar y aforarlo a 25 mL con agua destilada calidad tipo I

4.1.5. Disolución madre HxR
Pesar aprox. 0.0067 g del estándar y aforarlo a 25 mL con agua destilada calidad tipo I

4.1.6. Disolución madre Hx
Pesar aprox. 0.0034 g del estándar y aforarlo a 25 mL con agua destilada calidad tipo I

4.2. PREPARACIÓN DE LAS DISOLUCIONES PATRÓN DE LOS ESTÁNDAR DE NUCLEÓTIDOS

4.2.1. Con cada una de las disoluciones madre tomar alícuotas de 1, 3, 4 y 6 mL y aforar a 10 mL con agua destilada calidad tipo I.

4.2.2. Preparar y correr una curva de calibración para cada nucleótido.

5. PROCEDIMIENTO

5.1. EXTRACCIÓN DE LOS NUCLEÓTIDOS DE ATP Y SUS COMPUESTOS DE DEGRADACIÓN EN MUSCULO DE PESCADO. Método de Ehira et al.(1970)

5.1.1. Pesar 5.0000 g de músculo de la región dorsal del pescado.
5.1.2. Agregarle 25 ml de ácido perclórico (PCA) frío al 0.6 M, homogenizar durante 5 min.
5.1.3. Centrifugar durante 10 min a 3500 rpm a 2- 4 °C.
5.1.4. Extraer una alícuota de 10 mL del sobrenadante y neutralizarlo inmediatamente usando KOH 10 y 1 M (pH 6,5-6,8).
5.1.5. Centrifugar durante 10 min a 3500 rpm a 2-4 °C, para que precipite el exceso de perclorato.
5.1.6. Separar por filtración a través de papel de filtro Whatman 1.
5.1.7. Aforar el filtrado a 25 mL (balón aforado) con agua destilada calidad tipo I.
5.1.8. Trasvasar a un recipiente plástico y almacenar a -30 ºC hasta el momento de su análisis.
5.1.9. Filtrar con filtro de jeringa antes de inyectar al HPLC.
5.2. CONDICIONES CROMOTOGRÁFICAS

Columna: C 18, 5 µm, 4.6 x 250 mm
Detector: UV, DAD
Longitud de onda (λ): 254 nm
Fase móvil A: Buffer de fosfatos.
Fase móvil B: Acetonitrilo grado HPLC

Programa gradiente de fase móvil

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Composición de la fase móvil (%)</th>
<th>Flujo (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solución Buffer (A)</td>
<td>Acetonitrilo (B)</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

5.3. CALCULOS

5.3.1. Calcular la concentración de los nucleótidos en mmol/L entregado por el HPLC utilizando la ecuación de la recta, según corresponda para cada curva de calibración de los nucleótidos:

\[C_m = \frac{(A_m - b)}{m} \]

Dónde:
\[C_m \] = Concentración del nucleótido en el HPLC mmol/L
\[A_m \] = Área del nucleótido de la muestra
\[b \] = Intercepto de la curva de calibración
\[m \] = Pendiente de la curva de calibración

5.3.2. Para determinar la concentración total de cada nucleótido en la muestra de carne, usar la siguiente fórmula:

\[C = \frac{C_m \times 0.01 \times PMn}{g} \]

Dónde:
\[C \] = Concentración del nucleótido en mg/g, de la muestra de carne
\[C_m \] = Concentración del nucleótido de la muestra en mmol/L obtenida de la curva de calibración
PMn = Peso molecular del nucleótido

\[\text{g} = \text{Peso de la muestra de carne en gramos} \]

5.3.3. Reemplazar cada concentración de nucleótido obtenida con el cálculo anterior para determinar el porcentaje de valor K en la muestra de carne.

\[
\text{Valor K (\%)} = \frac{(HxR + Hx)}{(ATP + ADP + AMP + IMP + HxR + Hx)} \times 100
\]

6. ANEXOS

6.1. PESOS MOLECULARES DE LOS NUCLEÓTIDOS

ATP = 551.1 mg/mmol
ADP = 427.2 mg/mmol
AMP = 347.2 mg/mmol
IMP = 392.18 mg/mmol
HxR = 268.23 mg/mmol
Hx = 136.11 mg/mmol

6.2. CURVAS DE CALIBRACIÓN DE LOS NUCLEÓTIDOS

Figura 1. Curva de calibración para el nucleótido ATP (Adenosin-5´-trifosfato).
Figura 2. Curva de calibración para los nucleótidos ADP (Adenosin-5´-difosfato) y AMP (Adenosin-5´-monofosfato).

Figura 3. Curva de calibración para el nucleótido IMP (Monofosfato de Inosina).
Figura 4. Curva de calibración para el nucleótido HxR (Inosina).

Figura 5. Curva de calibración para el nucleótido Hx (Hipoxantina).
6.3. CROMATOGRAMA DE UNA MEZCLA DE NUCLEÓTIDOS ESTÁNDAR

Figura 6. Cromatograma obtenido para la disolución patrón de 1 mM de la mezcla de nucleótidos estándar.
Anexo 17
Manual

DETERIORO POST CAPTURA DE LOS PRODUCTOS PESQUEROS Y BUENAS PRÁCTICAS EN EL CULTIVO DE MOLUSCOS BIVALVOS

Escuela de Ciencias Biológicas – Estación de Biología Marina

INICIATIVA:
Incremento en la Competitividad de las PYMES del Pacífico Central mediante un Plan de Fortalecimiento Interuniversitario Regional

2009
¿Qué entendemos por Calidad?

Calidad es el conjunto de propiedades de un producto que influyen en su aceptabilidad a la hora de ser comprados o consumidos.

El concepto incluye muchos significados, como: inocuidad, nutrición, frescura, delicias gastronómicas, pureza, consistencia y excelencia de producto, además de honradez, por ejemplo en el etiquetado.

En general la calidad está asociada a:
- condiciones de conservación que aseguren su aptitud para el consumo
- un alto grado nutricional

Para lograr una buena calidad, debemos asegurar la conservación de nuestras capturas desde el primer momento.

Procesos del deterioro del pescado

Tan pronto como el organismo muere, comienza su descomposición

La velocidad de la descomposición y la posibilidad de prolongar la conservación en el mejor estado posible, depende de muchos factores que intervienen desde el momento mismo en que está siendo capturado el pez, antes de su muerte.
La carne del pescado y de los mariscos se deteriora más rápido y fácilmente que otras carnes. Ciertas características que posee favorecen el crecimiento y multiplicación de las bacterias que descomponen el pescado.

Factores que depende el deterioro:

1. **Especie y tamaño**

En los pescados pequeños, la relación entre la superficie y la masa corporal es mayor que en las especies más grandes. Más superficie expuesta a la desecación y al calor, y el ataque de organismos, favorecen la descomposición. El pescado más pequeño tiende a deteriorarse más rápido que el grande; y el pescado plano más rápido que el de forma redondeada.

2. **Metabolismo (actividad del pez)**

Los peces, y sobre todo las especies más activas en su comportamiento (grandes nadadores), poseen sustancias (enzimas) muy activas en los tejidos, que mantienen su actividad post-mortem (después de muertos). Las enzimas producen destrucción de las proteínas y grasas, así como otros cambios que modifican el aroma, el sabor y la textura.

3. **Arte de pesca y manipulación a bordo**

Si se usa una mala técnica de pesca, se pueden producir aplastamientos del pescado. Esto es indeseable ya que al romper las vísceras y los tejidos actúan las bacterias y enzimas que aceleran notablemente el deterioro (descomposición).
Debemos evitar golpes, cortes y daños al producto durante la manipulación.

4. Zonas contaminadas y tipos de contaminación

No pesquemos en zonas contaminadas, no llevar mascotas a bordo. Si la contaminación corporal e intestinal del pescado es alta y después de su captura también es elevada, la alteración será mayor y más rápida.

5. Condiciones del pescado en el momento de su captura

Una larga agonía provoca mayor consumo de glucógeno, cuya falta acelera la aparición de fenómenos de alteración.
¿Qué le pasa al pez o al molusco cuando muere?

Después de la muerte del organismo, ocurren una serie de cambios en su musculatura: un pronunciado endurecimiento o «rigidez cadavérica».

Los pescados muy activos y pequeños entran en este estado en forma rápida (entre 2 y 4 horas después de la muerte), dependiendo de:

- la temperatura,
- el estado alimentario de la especie,
- el método de captura.

Los pescados más grandes tardan más tiempo en entrar en este estado de rigidez y permanecen en el mismo por períodos más largos.

En general ocurren 4 procesos importantes de deterioro del pescado:

- Físicos
- Enzimáticos
- Microbiológicos
- Químicos

1. Procesos Físicos

Principalmente durante la captura y transporte ocurren daños físicos. Estos daños continúan al almacenarse los pescados a granel. A esto se suman las pérdidas por deshidratación, sobre todo si se almacenan durante mucho tiempo en la cubierta o quedan expuestos al viento y al sol.

Otros daños importantes:
- Heridas o cortes
- Pisoteo en la cubierta
- Cadena de transporte y almacenamiento
Es conveniente extender el mayor tiempo posible el «rigor mortis».

El modo más simple es enfriando el pescado rápidamente y manteniéndolo así, entre 0 °C y -1 °C, que serían las temperaturas ideales.

Si se congela el pescado, debe ser de manera muy rápida, llegando al menos a -18 °C.

Es importante recordar que: Luego de un cierto tiempo el «rigor mortis» desaparece, se ablanda la musculatura y comienzan a romperse las células. Por lo tanto, si se prolonga ese estado se conserva mejor el pescado y cabe la posibilidad de procesarlo con todas las

2. Procesos Enzimáticos

Las enzimas son sustancias que aceleran las reacciones químicas; se encuentran en el interior de las células y en los jugos digestivos. Permanecen activas aún después de la muerte del pez, provocando cambios irreversibles de sabor y textura en el músculo del pescado.

Hay tres tipos de cambios importantes debido a las enzimas:
- los que desencadenan el rigor mortis
- la ruptura de las células
- los cambios de textura, aroma y sabor irreversibles en el músculo del pescado.

3. Procesos Microbiológicos

Se debe a la acción de los microorganismos, seres unicelulares, microscópicos (no observables a simple vista); por ejemplo: bacterias, hongos, levaduras, parásitos y virus.

La presencia de microorganismos está asociada a:

Temperatura
La velocidad de descomposición de los productos pesqueros debido a los microorganismos aumenta con la elevación de la temperatura. Con un buen manejo, para algunos pescados por ej. el tiempo de almacenamiento a 0 °C es de 5 días, mientras que a 20 °C es menos que 1 día.
Medio ambiente

El ambiente en el que el pez o el molusco vivió, y al que se lo somete luego de la captura, es muy importante, por el tipo de microorganismos que pueden actuar y por las condiciones de crecimiento de los mismos.

Sustrato

Todos los productos pesqueros, al ser un alimento con alto nivel proteico y de agua, resulta un muy buen substrato para el desarrollo de los microorganismos. Es decir, los microorganismos encontrarán en los tejidos del pescado el alimento que necesitan para reproducirse.

4. Procesos Químicos

Son los cambios causados, por ej. por la oxidación de las grasas de los músculos del pescado, desarrollando olores y sabores a rancio.

Estos procesos están influenciados por factores como:

- Presencia de oxígeno
- Altas temperaturas
- Mayor exposición (pescado cortado o fileteado)

Cambios de aroma y sabor

Las reacciones químicas en los tejidos del pescado (proteólisis y lipólisis), producen sustancias que cambian el sabor y el olor.
Frescura - Higiene – Sanidad
Características que un producto debe cumplir para ser apto para el consumo humano.

Estas condiciones se resumen en Inocuidad.

La frescura es un factor fundamental a considerar para el dictamen de «aptitud para consumo humano».

Sin embargo… ¡Un pescado o un molusco puede estar fresco y NO SER APTO PARA EL CONSUMO!

Además de la frescura intervienen otros factores que tienen que ver con la higiene y la sanidad.

Higiene

Se debe proteger al producto de factores externos que pueden ser perjudiciales para el consumidor.
- **Contaminantes químicos**: petróleo, pesticidas, metales pesados, productos de limpieza (detergentes, lavandina), etc.
- **Contaminantes microbiológicos**: coliformes, estafilococos, coliformes fecales, virus, etc.

Sanidad

Tiene que ver con factores internos (propios del pescado y los mariscos) que pueden afectar al consumidor, por ejemplo: parásitos en la musculatura, zoonosis y biotoxinas.

Inocuidad

El producto que se obtiene a pie de granja debe estar libre de bacterias, virus y/o compuestos químicos que atenten contra la salud de los consumidores.
Buenas prácticas en el cultivo de moluscos bivalvos

Las prácticas responsables de cultivo de moluscos bivalvos están dirigidas a garantizar la producción sostenida y la calidad sanitaria o inocuidad del producto, sin afectar de manera considerable el medio, logrando con ello la sustentabilidad de la actividad.

Al igual que en otros organismos acuáticos, la producción de moluscos bivalvos para consumo humano requiere que las actividades que se realicen previo, durante y después de la producción, se lleven al cabo de tal manera que se obtengan productos de alta calidad sanitaria, conforme a las leyes y reglamentos en materia de alimentos.

La inocuidad de los moluscos bivalvos puede verse afectada por problemas de contaminación debido a industrias, actividades agrícolas, asentamientos y actividades humanas, ríos, fenómenos naturales, falta de instalaciones adecuadas y a la carencia de programas eficientes de higiene del personal. Asimismo, por un uso inadecuado de medicamentos veterinarios y sustancias químicas, que son utilizadas por algunos productores como una forma de reducir la probabilidad de aparición de enfermedades en los organismos cultivados.

Las buenas prácticas deben considerar los siguientes aspectos:

✓ Procesos que logren la producción de moluscos bivalvos inocuos, considerando la protección del medio en las áreas de cultivo y promoviendo programas alternativos de desarrollo.

✓ La selección adecuada del sitio de cultivo, asegura que la actividad estará en armonía con el medio y que el riesgo de contaminación del producto disminuya.
El diseño y construcción adecuada de un centro de producción acuícola.

El uso de alimentos adecuados. En el caso de los moluscos bivalvos, aplica principalmente durante la producción de semilla y en estos casos es importante que no contengan contaminantes químicos, toxinas microbianas, plaguicidas, antibióticos no permitidos u otras substancias adulterantes.

El manejo adecuado de la salud de los organismos, teniendo como prioridad las medidas preventivas en vez de la aplicación de tratamientos de enfermedades (ej. el uso de densidades apropiadas, uso de larva y semilla de buena calidad y libre de patógenos certificables, buena calidad de agua para el cultivo, la selección de la especie idónea de acuerdo a las condiciones ambientales y una buena nutrición).

Operaciones adecuadas durante el ciclo productivo que minimicen perturbaciones ambientales (biológicas o químicas). Utilizar semilla obtenida de laboratorio, cultivar preferentemente especies nativas y en caso de ser necesario el empleo de substancias químicas, éste debe realizarse en forma responsable.
Implementación de Buenas prácticas en el cultivo de moluscos bivalvos

La adopción de estas prácticas tiene como objetivo asegurar que el producto que se obtiene a pie de granja sea inocuo, es decir, que esté libre de bacterias, virus y/o compuestos químicos que atenten contra la salud de los consumidores. A continuación, una serie de recomendaciones para la buena aplicación de estas buenas prácticas.

1. Selección adecuada del sitio de cultivo

La selección del sitio de cultivo, es determinante para asegurar la inocuidad de los moluscos, por ello es necesario que sea un área libre de fuentes contaminantes que atenten contra la salud humana, que ofrezca las características adecuadas para un buen desarrollo de los organismos, etc. A continuación se sugieren algunas prácticas que pueden ayudar a la mejor selección del sitio:

- Evaluar los patrones de mareas, la influencia de cauces pluviales, corrientes, frecuencia de fenómenos naturales, etc.

- Crear un historial del sitio a partir de información, que se deberá obtener de entrevistas a residentes locales y autoridades (registros climatológicos).

- Evitar la selección de terrenos que colinden con áreas que representen un alto riesgo de contaminación para el cultivo de moluscos (minas, ganadería, agricultura, industria, asentamientos humanos, descargas de ríos, etc.).

- Al momento de elegir el sitio, es importante considerar la posibilidad de tener un lugar de depuración con las debidas características como medida de mitigación en caso de una contaminación.

- Determinar las características de la calidad sanitaria del agua en el sitio y áreas colindantes. El agua en el área de cultivo seleccionado, no debe contener valores de contaminantes que representen un peligro para la salud de los consumidores, de acuerdo a los estándares permitidos por las autoridades.
2. Consideraciones de higiene y salud del personal

✓ En cada granja o proyecto, debe existir una persona entrenada y designada como responsable de la revisión del cumplimiento del reglamento de higiene del personal.

✓ El personal deberá estar capacitado y cumplir con las buenas prácticas de higiene y salud, de acuerdo a su actividad y estar consciente de las repercusiones que podría tener, para los consumidores, la falta de cumplimiento del reglamento.

✓ El personal encargado del tratamiento o manipulación de moluscos bivalvos, deberá llevar indumentaria de trabajo apropiada, limpia y en buenas condiciones.

✓ Evitar acciones que puedan contaminar el producto como: fumar, comer, toser o estornudar sin la debida protección.
Las personas que padezcan una enfermedad infecto-contagiosa que pueda ser transmitida por los alimentos (tifoiidea, hepatitis, tuberculosis u otras), no deberán trabajar con productos y/o manipularlos hasta que se hayan recuperado. De igual manera, si presentan heridas infectadas o infecciones en la piel. Se debe contar con evidencia documental del control del estado de salud del personal.

3. **Instalaciones, equipo y utensilios**

- Se debe tener instalaciones y equipos adecuados para la correcta ejecución de las actividades, tanto en número como en condiciones, disponer de secciones o áreas adecuadas para los procesos de producción y contar con los servicios de apoyo, mantenimiento y reparación necesarios.

- Deben existir áreas físicamente separadas y ubicadas adecuadamente, para evitar contaminaciones químicas o biológicas que puedan afectar adversamente la inocuidad del producto.

- Las políticas de ingreso a las instalaciones para el personal externo, deberán estar claramente definidas y asegurar que se cumplan estas disposiciones.

- Se deberá contar con instalaciones sanitarias como letrinas, lavatorios, áreas de limpieza, etc. y estar provistos de agua corriente, papel higiénico, jabón desinfectante, toallas desechables y deberán estar ubicadas en un área separada del lugar donde se manipulen los alimentos.
Debe existir un área de almacenamiento de detergentes, desinfectantes y otros compuestos químicos. Estos deberán estar debidamente etiquetados con instrucciones de uso para evitar la contaminación. Se contará con un área especial para el guardado de guantes, delantales, botas y gorras limpias.

Si se utiliza agua de mar como elemento auxiliar de limpieza, ésta debe provenir del área aprobada y debe ser suministrada por vía distinta a la del agua potable.

Se debe contar con el equipo y materiales necesarios para la limpieza. Todo el equipo y utensilios en la granja deben mantenerse limpios y en caso necesario, también deben desinfectarse. Es importante que el equipo y material de limpieza que esté asignado a una sección específica de la granja, sea utilizado exclusivamente para esa área y no en otra, para prevenir la contaminación cruzada.

Lugares de trabajo

Debe estar diseñados de tal forma que se evite toda contaminación de los productos y deberá cumplir con los siguientes requisitos:

- El suelo debe ser antideslizante, fácil de limpiar y desinfectar y debe estar dotado de dispositivos que permitan una fácil evacuación del agua.
- Las paredes y techos deben ser fáciles de limpiar.
- Los circuitos hidráulicos deben estar dispuestos o protegidos de modo tal que un posible escape de aceite no pueda contaminar a los productos pesqueros.
- La ventilación y la iluminación deben ser suficientes.
- Debe contar con dispositivos para limpiar y desinfectar los útiles, materiales e instalaciones.
- En las instalaciones para lavarse y desinfectarse las manos, los grifos no podrán accionarse con las manos y las toallas deben ser de un solo uso.
Los aparatos y útiles de trabajo (mesas de despiece, contenedores, cintas transportadoras, evisceradoras, fileteadoras, etc.) deberán estar fabricados con materiales resistentes a la corrosión del agua de mar y deben ser fáciles de limpiar y desinfectar y mantenerse en buen estado.

4. **Limpieza y desinfección**

Para asegurar que todas las instalaciones, equipo y utensilios estén higiénicamente limpios, se deberá seguir un programa permanente que pueda incluir algunas de las siguientes etapas:

- **Pre - limpieza**: preparación del área y equipo. En esta etapa se incluye la remoción de materia orgánica e inorgánica, con la finalidad de facilitar las labores subsecuentes y evitar contaminación del nuevo producto.

- **Pre - enjuague**: enjuagar con agua limpia (de mar o potable), para remover grandes piezas de sedimento y exceso de lodos, así como cualquier otro desecho.

- **Limpieza**: dar un tratamiento sobre las superficies con un detergente apropiado para quitar la suciedad y tierra.

- **Enjuague**: con agua limpia (potable o de mar) para remover todos los lodos y residuos de detergentes.
✓ Desinfección: aplicar solo desinfectantes aprobados por las autoridades correspondientes y a las concentraciones adecuadas para evitar problemas sobre la inocuidad del producto.

✓ Post - enjuague: un enjuague final apropiado para remover todos los residuos de desinfectantes.

✓ Almacenamiento adecuado: los utensilios, contenedores y equipo deben estar limpios y desinfectados antes de ser almacenados, para evitar su contaminación.

✓ Verificación de la eficiencia de la limpieza: se deberá verificar si el material y equipo está higiénicamente limpio.

✓ El personal deberá ser entrenado en temas de higiene y en el uso de herramientas y químicos especiales de limpieza y concientizado de la importancia de la contaminación y de los peligros involucrados.

Mantenimiento de locales, equipos y utensilios:

✓ Las instalaciones, materiales, utensilios y todo el equipo en la granja, incluido el sistema de drenaje, deben mantenerse ordenados, limpios y en buen estado.

✓ Antes del inicio y al final de la jornada laboral, se limpiarán minuciosamente los materiales e instrumentos.
“Una limpieza a fondo debe efectuarse al menos una vez a la semana”

5. Abastecimiento de agua y hielo

✓ Si se utiliza agua de mar, ésta debe tener una calidad equivalente a la del área aprobada.

✓ El agua potable deberá ser usada donde sea necesario para evitar contaminación.
El hielo que se utilice en cualquier parte del proceso de producción o cosecha, deberá cumplir con lo establecido en la norma Nº 32327-S Reglamento para la Calidad del Agua Potable.

“Con hielo enfriamos el producto, retardamos la acción enzimática y bacteriana, manteniendo su calidad por varios días. No hacer esto, reduce la vida comercial del pescado.”

6. Manejo de los desechos

- Basura y otros materiales de desecho deberán ser removidos de las instalaciones.
- El local debe contar con basureros con tapa, y se deberán mantener limpios y en buen estado.
- La descarga de desechos no debe representar un riesgo de contaminación.

No se debe permitir la presencia de animales domésticos en las instalaciones ni a bordo de las embarcaciones y controla todo tipo de plagas (moscas, cucarachas, ratones, etc.)
Aspectos a tener en cuenta durante la cosecha

Esta sección destaca los requerimientos básicos de limpieza, reducción del daño fisco, contaminación durante el manejo y descomposición del producto durante la cosecha, de tal manera que puedan afectar la inocuidad de los moluscos bivalvos.

Para prevenir y reducir los niveles de contaminación se deberá tener en cuenta lo siguiente:

✓ Las áreas de cosecha y todo el equipo que se use debe ser lavado y descontaminado. Los materiales deben estar libre de corrosión, y no transmitir sustancias tóxicas.

✓ Los moluscos deben ser lavados para que queden libres de sedimentos tan pronto como la cosecha se haya practicado. El lavado se debe realizar con agua de mar, de calidad equivalente al agua del área aprobada o con agua potable a presión; no deberá reciclarse el agua utilizada.

✓ No exponer el producto innecesariamente a la radiación solar y de ser posible, contar con mecanismos de protección solar durante la cosecha.
Las instalaciones, materiales e instrumentos utilizados para la manipulación de los moluscos, deberán mantenerse limpios y en buen estado. Antes del inicio y al final de la jornada laboral, se limpiarán minuciosamente los materiales e instrumentos.

El personal que participa en la cosecha, deberá cumplir con las observaciones de buenas prácticas de higiene descritas anteriormente. Se debe prohibir el uso de todo tipo de joyas, adornos, relojes, maquillaje, etc.; así como fumar, comer y escupir en las áreas de trabajo.

Se deberán aplicar medidas que prevengan la contaminación cruzada, por ejemplo: señalarizar las diferentes áreas, identificando las zonas de bajo y alto riesgo; establecer un flujo de trabajo desde las zonas de bajo riesgo hacia las zonas de alto riesgo, de manera que se evite el cruce de operaciones; evitar el contacto del producto con superficies, materiales de empaque, materias primas, utensilios, guantes y vestimentas contaminadas.

Los desperdicios se almacenarán higiénicamente en una zona aparte y en contenedores cerrados apropiados para este fin.

Las técnicas de recolección no deberán ocasionar daño físico grave a las valvas o a los tejidos de los moluscos bivalvos vivos, ni ser una fuente de contaminación.
Las embarcaciones dedicadas a la recolección de moluscos bivalvos vinos y las utilizadas para el transporte de estas especies, deben estar equipadas de manera que proporcionen las mejores condiciones para su supervivencia. Particularmente, deberán reunir las siguientes características: construidas con materiales lisos que no contaminen el producto, que permitan su fácil limpieza y desinfección, resistentes a la corrosión, a la acción de roedores, a los efectos del sol y el viento.

Los moluscos bivalvos vivos no podrán ser transportados junto con otros productos que puedan contaminarlos (combustibles, alimentos, detergentes, desinfectantes, entre otros). Se debe evitar que entren en contacto directo con el piso de la embarcación, por lo que deberán descansar sobre un dispositivo que impida dicho contacto y contar con sistemas de drenaje para la eliminación de los líquidos que puedan contaminar los productos (líquido intervalvar, agua utilizada en la limpieza, entre otros). Los moluscos bivalvos deben ser estibados dentro de las embarcaciones de tal forma que se evite el daño a las conchas.

El personal de la embarcación, deberá observar buenas prácticas de higiene, estar convenientemente equipado para proteger a los moluscos de las temperaturas extremas, de la suciedad, de polvo, aves, roedores, cucarachas, moscas, etc.
Aspectos a tener en cuenta en la manipulación durante la descarga y transporte

La descarga es el conjunto de operaciones que consisten en sacar el producto de la embarcación y transbordarlo al medio de locomoción que lo transportará al mercado o a la planta de procesamiento. En esta operación es importante que el producto no esté en contacto con superficies que puedan ser una fuente de contaminación, sea bacteriana o química.

También es importante que la maniobra se realice en el tiempo adecuado, de modo que no se exponga el producto a la acción de temperaturas elevadas durante tiempos prolongados.

¡Una mala descarga puede malograr todas las correctas acciones de manipulación preservación realizadas por el pescador/productor!
Por eso, los muelles y centros de descargue o recibo, deben mantenerse limpios, libres de residuos de pescado, de excremento de aves o acumulaciones peligrosas de aguas residuales y estancadas. Además, cuando el producto va a ser colocado en los camiones de transporte el pescado debe ser tratado con mucho cuidado, evitando golpes o malos tratos y ser expuesto al calor en forma innecesaria.

Por eso recomendamos lavar las áreas donde se reciben pescado por lo menos una vez al día. Todos los equipos, contenedores e implementos, así como las superficies en contacto con el producto se lavarán con agua potable.

En cuanto a los agentes de limpieza o desinfección, u otras sustancias que pueden ser tóxicas, deben estar separados de la captura y usados de forma tal que no existan riesgos de contaminación de los productos pesqueros.
En cuanto al transporte, si éste se hace en forma efectiva nos permitirá trasladar el producto del muelle al lugar de comercialización, manteniendo la misma calidad de frescura. Para esto es importante utilizar camiones provistos de sistemas isotérmicos e indispensablemente usar hielo.
Si cumplimos con las indicaciones de esta guía, podemos brindar un producto fresco y seguro para el consumo, siendo nuestro trabajo una fuente importante de alimentación y bienestar para nuestra familia y comunidad. Trabajemos juntos para seguir cumpliendo con estas metas!
Bibliografía consultada

Hace aproximadamente ocho años, se iniciaron gestiones de regionalización interuniversitaria a partir de la necesidad de integrar las cuatro Universidades Estatales. En julio de 2006 se establece una estrategia para la implementación de la regionalización dentro del Plan Quinquenal del Consejo Nacional de Rectores (CONARE). Y en el 2009 se incorpora el proyecto de la Región Pacífico Central.

En un marco de múltiples necesidades que caracterizan las regiones, se concibe la Regionalización Interuniversitaria como un instrumento en la búsqueda del desarrollo endógeno e integral (social, económico, político, cultural, ambiental) dentro del contexto participativo que promueva el empleo y potencie los recursos físicos y humanos de la región.

El Objetivo de este Proyecto es fortalecer la acción Interuniversitaria del Sistema de Educación Superior de Costa Rica a nivel regional.

Los Principios Específicos en que se basa son:
- Promover el desarrollo integral de las comunidades.
- Promover la inclusión social como medio para combatir la inequidad.
- Reconocer la diversidad cultural presente en cada región.
- Desarrollar la conciencia de conservación ambiental.
- Propiciar la conciencia crítica y solidaridad social en los miembros de las comunidades.
- Promover el desarrollo de las capacidades locales y potenciar los recursos existentes.
- Partir de las necesidades consensuadas y analizadas de los actores locales.
Buy your books fast and straightforward online - at one of world’s fastest growing online book stores! Environmentally sound due to Print-on-Demand technologies.

Buy your books online at
www.get-morebooks.com

¡Compre sus libros rápido y directo en internet, en una de las librerías en línea con mayor crecimiento en el mundo! Producción que protege el medio ambiente a través de las tecnologías de impresión bajo demanda.

Compre sus libros online en
www.morebooks.es