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Abstract—Extreme-scale computing systems are required to
solve some of the grand challenges in science and technology.
From astrophysics to molecular biology, supercomputers are an
essential tool to accelerate scientific discovery. However, large
computing systems are prone to failures due to their complexity.
It is crucial to develop an understanding of how these systems fail
to design reliable supercomputing platforms for the future. This
paper examines a five-year failure and workload record of a
leadership-class supercomputer. To the best of our knowledge,
five years represents the vast majority of the lifespan of a
supercomputer. This is the first time such analysis is performed
on a top 10 modern supercomputer. We performed a failure
categorization and found out that: i) most errors are GPU-
related, with roughly 37% of them being double-bit errors on
the cards; ii) failures are not evenly spread across the physical
machine, with room temperature presumably playing a major
role; and iii) software errors of the system bring down several
nodes concurrently. Our failure rate analysis unveils that: i) the
system consistently degrades, being at least twice as reliable at
the beginning, compared to the end of the period; ii) Weibull
distribution closely fits the mean-time-between-failure data; and
iii) hardware and software errors show a markedly different
pattern. Finally, we correlated failure and workload records to
reveal that: i) failure and workload records are weakly correlated,
except for certain types of failures when segmented by the hours
of the day; ii) several categories of failures make jobs crash within
the first minutes of execution; and iii) a significant fraction of
failed jobs exhaust the requested time with a disregard of when
the failure occurred during execution.

Index Terms—Fault tolerance, resilience, failure analysis, high
performance computing.

I. INTRODUCTION

The computational demands for running scientific sim-
ulations and analyzing massive data repositories has been
steadily growing. The need for ever-increasing processing
power is present across many scientific disciplines and has
resulted in groundbreaking discoveries from astrophysics to
molecular biology. Often when experiments prove too costly
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or too dangerous, sophisticated supercomputers comprised of
many heterogeneous computing elements are called upon to
produce scientific simulations. These supercomputer systems,
although successful, have two salient characteristics. First,
they are very complex. They are composed of processors,
memory modules, interconnection networks, disks, cooling
devices, software stack, and others. It is exceedingly difficult to
completely understand all possible interactions between parts
of a highly integrated computer architecture. Second, the parts
are faulty. Indeed, among the most powerful computers, the so-
called leadership-class computers, simply getting 100% of the
computer available for a single large scientific simulation is a
significant challenge due to failures affecting some potentially
small portions of the machine. In fact, it is urgent to tackle the
reliability challenge as it represents one of the major hurdles
to continue scaling big supercomputers [1], [2], [3].

We seek to improve the understanding of how different
parts of today’s large computing systems interact and fail to
improve hardware and software designs for future resilient
supercomputers. One approach to develop such an understand-
ing is by analyzing component failures on a large machine.
By inspecting the error logs and other abnormal events, it is
possible to create a profile of the machine dynamics, improve
root-cause analysis of failures, and identify areas with high
potential for improvement in future systems resiliency.

We focus on understanding the hidden failure patterns of a
leadership-class supercomputer in this paper. We start with a
massive curated event database of the machine. The events in
the database have been introduced by the system administra-
tors and possibly reflect the best knowledge of the machine’s
internal operation. We distill the unique failures from the
event database and provide several descriptive statistics of the
system. We then analyze the failure rate at different levels.
Finally, we aggregate the failure information to the workload
records and study the interplay of both the usage and the
failures of the system. Our analysis uses and correlates a
five-year failure and workload record. To the best of our
knowledge, this is the first time such analysis is performed
on a top 12 modern supercomputer. Here are the highlights of
this paper:

• A failure categorization for a five-year reliability record
on a leadership-class supercomputer (§IV). We found that
GPU-related errors dominate the record, with roughly



Fig. 1: Failure Propagation.

37% of them being double-bit errors. The physical
distribution of nodes show some failure hotspots, with
room temperature presumably playing a major role. Most
failures only affect one single node, but software failures
usually bring down several nodes concurrently.

• A close examination of failure rates using different scales
(§V). We show how the system degrades, and highlight
that at the beginning of the five-year period it was twice as
reliable than at the end of the period. Weibull distribution
best fits the mean-time-between-failure data.

• A study of the interplay between workload and failures
on the system (§VI). Failure and workload records are
weakly correlated, with the exception of software errors
when analyzed by the hours of the day. Software errors
typically make jobs crash within the first minutes of
execution. A big portion of failed jobs complete their
requested time, regardless of the failures that occurred
during execution.

II. SYSTEM DESCRIPTION

For this paper, we studied data from the Titan super-
computer. Titan is a Cray XK7 system located at the Oak
Ridge Leadership Computing Facility (OLCF). Titan features
a hybrid architecture of GPUs and CPUs. Together, these
processing elements combine to provide 17.59 petaFLOPs
from a total of 18,688 nodes. Each node has 32 GB of main
memory with an AMD 16-core Opteron CPU and an NVIDIA
Tesla K20 GPU. In total, the system has 299,008 Opteron
cores. At the time of writing this paper, Titan is at the ninth
position in the world according to the Top500 list [4], but in
2012 it occupied the first position and it was one of the first
supercomputers to use a hybrid architecture.

A. Failure Dataset

This work analyzes failure records from year 2014 to 2018.
The system administrators of Titan maintain a failure database
to keep track of all abnormal incidents on the machine. Every
single incident is registered into a failure database [5]. The
database is automatically populated by a program that uses a
simple event correlator (SEC) [6] to apply correlation rules
and insert records in the database. Using the correlation rules,
the SEC examines individual output streams from each node
and merges multiple reports of the same event into a single
database entry. An entry in the failure database corresponds
to an event that can be linked to a component for a specific
job identifier. Therefore, the failure database contains a list of
records with the following properties: hostname (Titan su-
percomputer for this study), job_id (the job number affected
by this event), fail_time, category (either hardware or

software), reason (either system or user), description
(of the event), text (with more information on the location
of the event), and jf_id (event identifier). Table I presents
the number of events in the failure database for each year.

Year 2014 2015 2016 2017 2018
Events 161,209 258,376 443,967 451,966 1,347,994

TABLE I: Number of Events in the Failure Database.

There is a range of severity in the events of the failure
database. Some events represent warnings while others catas-
trophic failures. Also, some events in the database may be
related if a fault in one component has an effect on other parts
of the system. Therefore, several (potentially many) events
may represent a single failure.

Figure 1 presents the cause-effect dependencies in the events
of the database [7]. These are potential dependencies, because
some events can occur without the preceding events in the
graph appearing. For instance, it is usual to have a GPU
DBE error generating a GPU DPR error and then a GPU Xid
error. In that case, the filtering analysis will only leave the
original GPU DBE error. However, in some other instances
GPU Xid errors are generated in isolation. The left part of
Figure 1 shows general error propagation paths. A Voltage
Fault may induce a Module Failure, a SXM Power Off, or an
HT Lockup. However, errors like HT Lockup and Kernel Panic
most often have other causes other than voltage problems. The
center part of the figure shows the GPU-related errors, with
GPU DBE (double-bit error) causing GPU DPR (dynamic
page retirement). Other erros are GPU BUS (GPU off the bus)
and GPU Xid, which is a general type of software error with
several different causes. The right part of the figure has the
isolated errors, which means they are not produced by other
events and they can not produce other events.

B. Workload Dataset

Our analysis incorporates job scheduler records for the years
2014-2018. The MOAB job scheduling and management sys-
tem is used on Titan. MOAB registers many events associated
with job execution: launch, start, pause, finish, cancel, and
more. Therefore, for each job it is possible to know the number
of nodes requested, the submission time, the waiting time in
the queue, the effective execution time, and practically any
salient feature of the job. MOAB stores the job event data in
a file for each day, using the MOAB data format [8]. There are
57 properties for each event in a MOAB log file. We use the
word workload to refer to all executed jobs within a timeframe.

III. METHODOLOGY

Figure 2 shows the methodology we implemented for the
data analysis in this paper. We divided the analysis into
processes, which display interdependencies. The methodology
was implemented through a series of Python scripts, with
the purpose of automating and simplifying the manipulation
and analysis of failure and workload data. However, we will
only describe the functionality of the processes and not the
specifics of the scripts or data format nuances. For those



Fig. 2: Data Analysis Methodology.

details, we refer the reader to the open code repository at
https:/ /github.com/emenesesrojas/slaf.

The first process represents the Data Cleaning and Prepro-
cessing (DCP) that enforced a consistent format in all input
files, both from failure and workload sources. The next couple
of processes consist of: i) selecting elements from the failure
datasets (Failure Filtering), and ii) formatting elements from
the workload dataset (Workload Formatting). These processes
are necessary because datasets can not be directly used. The
datasets generally contain a lot of redundant and unformatted
data.

The Failure Filtering process starts by removing superfluous
information in the dataset. We filter data considering two
columns of the dataset, category and reason as explained in
Section II. This process allows us to filter data by hardware
or software failures and by type of error: memory errors
or GPU errors in all its variations. This phase also filters
out Heartbeat Fault entries. Such events are not considered
failures, but system warnings. Then, redundant failure events
are eliminated, i.e., those events that are dependent on other
events with the same job_id number. We only retain events
with no dependencies, because they are the root of the failure
chain of events as suggested by Figure 1. Therefore, we avoid
double counting failure events. The failure filtering process
finishes by collecting the affected nodes in the failure chain
of events, regardless of whether those events were removed.

The Workload Formatting process performs crucial sub-
processes. First, it removes redundant information. Not all
entries in the workload dataset are job entries. Some entries are
events originated by the system scheduler or events triggered
by fatal exceptions on the system. This sub-process removes
all entries not related to job submission. Second, this process
consolidates information on submitted jobs. The following
measurements are of particular interest for each job: waiting
time, execution time, and number of requested nodes. Not
every job submission case is successful. For this analysis, we
filter the workload dataset to get only jobs with job events
JOBEND or JOBCANCEL. That assures us the job was in
execution.

The Failure Analysis process inspects the previously filtered
data in search of meaningful patterns. We performed a failure
categorization by reason or description, and by different time
scales to provide a broad view of failure classification. We also
studied the spatial distribution of failure according to the cab-
inet where failures occurred. Since our analysis contemplates
several years, we also looked for hidden patterns in the time

series. This process also deals with failure rate analysis. We
characterize the empirical Cumulative Distribution Function
(CDF) for the mean time between failures (MTBF) and how
well that data is fit by traditional probability distributions:
Weibull, lognormal, and exponential distributions. Also, we
evaluate the Kolmogorov-Smirnov Goodness of Fit Test to
determine how close the data fit statistical distributions.

Additionally, we study the correlation between failures
and workload (Interplay Analysis process). To evaluate such
correlation, we implement the Pearson correlation index to
determine if failures and workload are correlated in some
way. Besides, to find possible correlations we extract and
manipulate data from the filtering and formatting sub-process
at different time scales.

Finally, the Visualization process uses the data to obtain
an insightful visual display of results. We plot all necessary
visualizations to show the correlations, categorizations, and
results from our statistical analysis. This process also includes
some transformation of data for the final projections.

IV. FAILURE CATEGORIZATION

Each year, the SEC program inserts hundreds of thousands
of records in the failure database (Table I). Each record can
be classified using any of two variables: category (hardware
or software) and reason (system or user). We wanted to
focus only on system failures for this paper. Therefore, we
discarded user failures. The total user failures removed in the
five years were 816,826 (30% of total records for the 2014-
2018 period). The share of system failures for each year is:
67.2% in 2014, 47.6% in 2015, 23.4% in 2016, 40.1% in 2017
and 98.8% in 2018. Nevertheless, although year 2016 has the
lowest percentage of system failures, it is the year with the
highest negative impact. It is essential to know the failure
behavior throughout the five years. We started this study with
the following research questions: what are the most common
type of failures?, what physical locations are more likely to
fail?, how many resources are affected by a failure?

Figure 3a shows failure categorization of the 2014-2018
period by hardware-software. Both categories have no com-
parable shares, 30.7% for software and 69.3% for hardware.
Note that inside the hardware category there is a failure type
(GPU DBE) with the highest percentage of all filtered failures
with a 36.8% of total failures and 53% of the hardware
category. This error can be caused by a variety of reasons
such as voltage fluctuations and cosmic rays. Most of the
GPU structures are protected with a Single Error Correction
Double Error Detection (SECDED) ECC, but in this case it
can only detect and it can not correct these errors. A DBE
error does not necessarily mean that the execution terminates
prematurely. But, when a DBE error is detected, the SECDED
ECC always crashes the program. This is the case because
a correct execution after a double-bit error detection cannot
be guaranteed [9] [10]. The GPU Xid is a GPU error code
from the NVIDIA driver indicating that a general GPU error
occurred. The Xid errors can be an indicator of a hardware
error, an NVIDIA software problem, or a user application



(a) Failures by Category and Description. (b) Failures by Cabinet. (c) Nodes Affected.

Fig. 3: Failure Categorization 2014-2018. Failures were categorized by their type in the dataset (3a), their spacial location (3b),
and the number of hardware resources that were affected (3c).

problem [11]. Such a variety of causes explains the high
percentage of Xid failures.

Figure 3a displays a section for Other Failures that includes
both software and hardware failures. Voltage Fault, SXM
Power Off, SXM Warn Temp, HT Lockup and Module Failed
belong to the hardware category and Kernel Panic, RDMA
Failure and LBUG belong to the software category.

Titan is composed of 200 cabinets, which are subdivided
into cages (three cages per cabinet), blades (eight blades per
cage) and nodes (four nodes per blade). Each node (CPU +
GPU) has a unique ID for its identification. For example, the
node with ID ”c24-1c2s7n1” identifies the column 24(c24),
row 1(1), cage 2(c2), blade 7(s7) and the node 1(n1). We
carried out a spatial categorization based on the cabinet
physical location. Figure 3b shows a heatmap with failure
distribution across all cabinets. Note that the heatmap figure
has 25 columns and 8 rows corresponding to Titan’s physical
distribution. We can see in Figure 3b the highest number of
failed cabinets appear on the upper right corner and there
exists an interleaved failure pattern in multiple rows. This
is due to the fact a folded-torus cabling was used in Titan
to avoid uneven length of cables in the 3-D torus Gemini
Interconnection [12]. For this reason, nodes within the same
job will be allocated in this alternating manner [10]. This
is interesting because it could be a signal of malfunction of
some nodes that persists through time. In addition, the highest
failure rate occurs on the right side of Figure 3b (the region
between rows 1 to 7 and columns 17 to 24). According to
the system administrator, across the aisle on that same side
of the machine, there are other testbeds and clusters. Those
machines might be pumping a considerable amount of hot air
back into the room. Therefore, we presume temperature may
play a role on increasing the failure rate of the components
located on that side.

It is important to clarify that one failure can affect either
only one node or multiple nodes. The number of affected nodes
depends on the error type. For this reason, although in 2014
there were 565 failures (result of the failure filtering process),
the same year reports 10, 275 affected nodes. For years 2015-
2018, the number of failures were 649, 1824, 1291, and 1325,
respectively. In the same range, the number of affected nodes
were 1659, 2620, 1563, and 37,779, correspondingly. Due to
the former premise, 70% of failed nodes correspond to 2018.
It is important to note that in some cases, one failure could
cause a thousand nodes being affected. Finally, it is important

to remark that year 2018 is the year with most affected nodes
and with the highest number of uniform failed nodes. This
could be due to hardware problems that the system has been
presenting since 2016.

Figure 3c shows the number of nodes affected by one
failure. According to Figure 3c, more than 87% (4600 failures)
of all failures only affect one node with 62% (2852 failures) of
hardware failures and 38% (1748 failures) of software failures.
Note that the number of failures affecting simultaneously more
than one node decreases and it only represents 13% of all
failures. This is important because we can see that in most
cases the failures in Titan did not bring down multiple nodes.

If we analyze failed nodes by year, we find out that year
2016 shows the highest affectation with 35.5% of all failed
nodes throughout 2014-2018. Years 2017 and 2018 have a
share of 25.3% and 20.3%, respectively. It is important to
point out that in almost all cases the highest value is the
software category and only when one, two, three or four nodes
are simultaneously affected is there an increase of hardware
events. Another remarkable issue is that only 24 nodes were
simultaneously affected by hardware problems. Nevertheless,
by software problems the number of nodes simultaneously
affected reached 2048 in 15 events. This is a indicator that
software events were the main cause of bringing down multiple
nodes.

V. FAILURE RATE ANALYSIS

This section provides a characterization and modelling of
failure rates in multiple dimensions. We set out with the
following research questions: how are the different types of
failures distributed in time?, what distribution better fits the
data? This knowledge can be used to: i) address particular
components during maintenance windows, ii) schedule jobs
according to how critical they are, and iii) determine the way
hardware and software errors differ. The most important metric
to analyze the failure behavior on a system is the calculation
of the Mean Time Between Failures (MTBF). In Figure 4 we
can see that in the middle of the year 2015 the incidence of
failures began to increase and in the year 2016 the failures
reached the highest rate. After that, failure events decreased
and in the year 2017 the failure rate was stable. Nevertheless,
it was higher than the year 2014 and 2015. Finally, at the
end of the year 2018 the failure rate began to increase again.
This phenomenon has been described elsewhere [13], where
the authors claim that the cause of failure increase in the



Fig. 4: Failure Time Series 2014-2018. It shows the total
failure count and three of the main failure types.

year 2015 was attributed to the GPUs and the increase in
the number of DBE failures was an indicator of a failing
GPU device. After that, an effort was undertaken to fix the
problem in July 2017, and 9500 GPU devices were replaced.
Based on the former case and the description of the problem
in the literature [13], we divided the failure time series in
three epochs. We believe that the division by epochs (and not
by years) provides a more precise analysis of the failure rate,
because epochs exhibit distinctive failure patterns. The MTBF
of each epoch in hours was 13.86 in epoch 1, 6.13 in epoch 2,
and 7.16 in epoch 3. In general the failures appear distanced
by a few minutes and the mean value decreases in more than
50% in epoch 2. After that, the mean value increases a little
bit. Note that in epoch 2 the mean value decreases to just 6.13
hours. Failures increase from 1.73 per day in epoch 1 to 3.9
per day in epoch 2. An important reason behind the increase of
failure frequency through the years is hardware degradation,
especially degradation of GPU devices (see Section IV for
more information).

To better understand failure behavior, Figure 5 shows
the MTBF Cumulative Distribution Function (CDF) of each
epoch. We implemented three different types of distributions
to find which one provides the best fit to the data failure
frequency. Consistently, we see that in the three epochs the
Weibull distribution fits the data better than the Lognormal and
the Exponential distribution. The exponential distribution has
the poorest fit. Also, we conducted the Kolmogorov-Smirnov
Goodness of Fit Test (KST) to determine which distribution
represents the cumulative distribution function of the MTBF
better. The results of KST in each year (Table 5b) show us that
the Weibull distribution fits the data best. We do not reject the
null hypothesis because the computed D values of the Weibull
distribution are the lowest and the p value for the three epochs
is p < 0.001. The calculated Weibull shape parameter (k) was
0.57 in epoch 1, 0.75 in epoch 2, and 0.81 in epoch 3. That
means, the defective items failed early and the failure rate
decreased over time as the defective devices are removed out
of the machine. The mean time of the Weibull distribution
in each epoch was 14.77 in epoch 1, 6.01 in epoch 2, and
7.19 in epoch 3. We can see that the values of the model
are similar to the values of the mean time data. These results
are important for fault tolerance research and fault injection
techniques that often assume that the failures come from an
exponential distribution. This can lead to incorrect impact
failure estimations, total execution times, and the optimal
checkpoint intervals.

(a) CDF of Epoch 1.

Epoch Weib LogN Exp
1 0.06 0.12 0.24
2 0.02 0.05 0.13
3 0.02 0.09 0.08

(b) Kolmogorov Smirnov
Test (KST).

Fig. 5: Cumulative Distribution Function (CDF).

VI. WORKLOAD AND FAILURE INTERPLAY

Understanding the effect of the workload on the failure
record is crucial to develop resilient software for HPC sys-
tems. We kicked off the interplay analysis with the following
research questions: do failures and workload correlate?, which
type of failures may be caused by users?, what is the impact of
failures on the usage of the system? To determine other possi-
ble relationships between workload and failures in the system,
we will present the data in different time series. Figure 6
shows two years of interplay between failures and workload.
We chose to show only years 2014 and 2018 because they
represent the two extremes in the time period and they have
different interplay patterns. We devised a representation to
display the full interplay details. We call this representation
a failure-workload correlation matrix (FW matrix). An FW
matrix has all years in the 2014-2018 period as rows and
columns. The bottom triangular matrix (highlighted in blue)
contains the correlation of failure time series for all pairs
of years. The upper triangular matrix (highlighted in red)
comprises the correlation of workload time series for all pairs
of years. The main diagonal displays the failure and workload
correlation of each year.

The first column of Figure 6 (6a, 6d) represents the interplay
between failures and jobs per hour of the day. In Figure 6a
we see a moderate similarity between failures and workload.
This is confirmed with a correlation coefficient of 0.52. On the
other hand, the year 2018 had the lowest correlation coefficient
with 0.19. The second column of Figure 6 (6b, 6e) represents
failure and workload rates by day of week. Figure 6b shows
a strong similarity between workload and failures. But, its
correlation coefficient is the lowest (0.21) of the five years.
It is important to note that the year 2015 and 2016 have
a correlation coefficient of 0.8 between the workload and
failures. The last column of Figure 6 (6c, 6f) shows failures
and workload per week of year. The correlation coefficient
between failures and workload by week of year was clearly
weak for all years (diagonal of Table 7c). This result suggests
that by week of the year there is no correlation at all between
failures and workload.

Figure 7 shows the interplay correlation coefficients in FW
matrices. Looking only at the workload pattern in Figures 6a
and 6d we get a correlation coefficient in hour of the day of
more than 0.97 in all cases (upper triangular part of the FW
matrix). Interestingly, this strong correlation in the workload
shows us that the use of the system is very similar throughout
the years. Also, matrix 7b shows us a strong correlation



(a) Hour of the Day (2014). (b) Day of the Week (2014). (c) Week of the Year (2014).

(d) Hour of the Day (2018). (e) Day of the Week (2018). (f) Week of the Year (2018).

Fig. 6: Interplay Between Failures and Workload for Years 2014 and 2018. Failures and jobs are shown per hour of the day
(6a, 6d), day of the week (6b, 6e) and week of the year (6c, 6f).

Year 2014 2015 2016 2017 2018
2014 0.52 0.98 0.98 0.98 0.97
2015 0.53 0.81 0.98 0.98 0.97
2016 0.08 0.54 0.18 0.99 0.97
2017 -0.32 0.28 0.27 0.11 0.97
2018 0.14 0.39 0.25 0.51 0.19

(a) Hour of the Day.

Year 2014 2015 2016 2017 2018
2014 0.21 0.48 0.34 0.38 0.50
2015 0.64 0.80 0.87 0.96 0.96
2016 0.54 0.96 0.80 0.81 0.80
2017 0.54 0.81 0.76 0.67 0.96
2018 0.36 0.37 0.43 0.74 0.31

(b) Day of the Week.

Year 2014 2015 2016 2017 2018
2014 0.07 0.04 0.04 0.23 -0.13
2015 -0.12 0.06 0.05 0.32 0.02
2016 0.04 -0.25 0.19 0.06 -0.02
2017 0.14 0.29 -0.43 -0.2 0.31
2018 -0.11 0.02 0.22 -0.13 -0.09

(c) Week of the Year.

Fig. 7: Failures and Workload Correlations of the Period 2014-2018. It shows three correlation matrices in which the blue
color represents the failure coefficients and the red color represents the workload coefficients.

Fig. 8: Interplay Between Total Jobs and Hardware-Software
Failures by Hour of the Day during 2014-2018.

between some years. The workload shows the best correlations
between year 2015 and years 2016, 2017, and 2018. Also,
the same year has strong failure correlation with years 2016
and 2017. Due to the former cases, we could conclude that
there is a behavior pattern throughout the days of week and
throughout the hours of the day, both of the workload and
of the failures, among years. The matrix that represents the
workload and failures by week of year (Figure 7c) has the
poorest correlation coefficients.

Figure 8 shows five years of interplay between workload
and hardware-software failures by hour of the day. Note that
the software failures line visually coincides with the workload
line, but with the hardware line there is no coincidence at
all. The former premise shows us a possible correlation of
the workload with the software failures. This hypothesis is
reaffirmed with the strong Pearson correlation coefficient of
0.84 between the workload and the software failures. The
correlation coefficient between the workload and the hardware
failures is only 0.34. With these facts, we hypothesize that
there is an incidence between workload and many of the

software failure events that were generated in the system. Also,
there is no apparent relationship between the workload and the
hardware failures.

Figure 9 shows the time of execution of the year 2014 and
2018. It is essential to highlight that the five years show a
similar pattern of execution time not only of failed jobs but
also of the total quantity of jobs that were executed no matter
if they failed or not. Only in the years 2014 and 2015 do the
shortest execution times (range 0) provide more failed jobs.
After that, failed jobs decreased keeping its number relatively
low and constant until approximately a period of 20 minutes.
Afterwards, there is a peak of failed jobs in the time range
50 to 99 minutes (50+) and in the last bar on the right which
shows the number of all failed jobs with at least 10 hours of
execution before failing. The time range 50+ has the highest
number of failed jobs, because many of those failed jobs have
a wallclock time limit of 60 or 90 minutes.

This provokes the idea that jobs that failed before two hours
were not reported until the requested time ended. From 2016
to 2018, for example, Figure 9b registers less than 5 failed jobs
in the execution range of 0 to 59 seconds (range 0), differing
from years 2014 and 2015 (Figure 9a) that do not present
failed jobs in that range. The root cause could be that in those
years many of the jobs that failed did not do it within the
first minute of execution and many failed jobs in that range
were reported as user failures. Undoubtedly, the jobs with high
execution times are not test or debug runs and are the most
affected if resilience mechanisms are not incorporated.

The 0 range in years 2014 and 2015 presents a great number
of failed jobs probably caused by the debug and test runs



of the final user. Because they are debug and test runs, the
execution does not take longer that one minute. Most of the
jobs that fail in this range are type GPU XID. This type of
failure corresponds to 98.3% in the year 2014 and 97.2% in
the year 2015. According to NVIDIA’s documentation [11],
these types of errors can be an indicator that a general GPU
error occurred (hardware problem, NVIDIA software problem,
or a user application problem). In 2016, 2017, and 2018 range
0 had almost 0 failures.

If the causes of failed jobs in other time ranges are analyzed,
it can be stated that a GPU XID remains as the main cause of
failures. For example, in the 50-99 minutes (50+) these types
of failures become 40% in the year 2014, 43% in the year
2015, 36% in the year 2016, 23% in the year 2017, and 25%
in the year 2018. Finally, in the time range of 600 minutes
plus (600+) the GPU XID decreases by 12%, 9%, 3%, 5%,
and 5% in years 2014-2018, respectively. Nevertheless, in the
same range GPU DBE failures increase by 11%, 20%, 37.5%,
44%, and 52% in years 2014-2018, correspondingly. Knowing
the failure rates of GPU XID and GPU DBE may help the
system administrators to focus on what hardware should be
changed or fixed.

On the other hand, the highest execution time ranges and
the highest number of failed jobs (i.e., 50+, 100+, and 600+)
predominantly present failures of type GPU DBE, GPU DPR,
GPU BUS and Machine Check Exception. The GPU errors
are related to each other (Figure 1) and all, except GPU BUS
failure, can be originated from GPU DBE failure. However,
this type of failure should be very rare and according to
the literature [10] there exists a probability that a higher
temperature can lead to more GPU DBE errors. Additionally,
some cards are more susceptible to this issue than others. In
Figure 9b we observe that in most cases where there is a rise
in the number of failed jobs, there also exists a rise in the
number of the jobs that were executed. This indicates that
the increase of failed jobs is correlated to the increase of the
number of jobs in execution, which can affect the level of
temperature of the systems. Also, with this information, the
system administrators can change the scheduling policies to
improve the system performance.

VII. RELATED WORK

The analysis of failures on supercomputers in recent years
has been an active research area. In [14], [15], [16] studies with
multiple different HPC systems were carried out . Depending
on the study, they analyzed the root cause of failures, failure
rates, correlations, node reliability and statistical properties
of time between failures, and the repair times. These three
studies were made with datasets from Los Alamos National
Laboratory (LANL). Perhaps, the biggest contrast between
these studies and our study surrounds workload: despite the
fact that these studies take into account many years of failure
data, they do not have workload data for analysis. Other
studies that included failure data from multiple supercomputer
systems were [17] that analyzed the log failures of 10 public
workload datasets from 8 HPC systems and [18] that analyzed

(a) Execution Time Distribution (2014).

(b) Execution Time Distribution (2018).

Fig. 9: Execution Time Distribution of Failed Jobs. Figures
9a and 9b show failed jobs (color bars) and total submitted
jobs (solid line), respectively. Colors denote type of failure.

the source of failures of Sunway BlueLight (multi-core CPUs)
and Sunway TaihuLight (many-core CPUs) supercomputers.

Studies performed by [19], [20], [21], [22], [23] analyzed
failure data from Blue Gene/L, Blue Gene/P and, Blue Waters
supercomputers. In [19], [20], [21] failure data from Blue
Gene/L was analyzed to perform statistical analysis, correla-
tion analysis between failures and workload, failure categoriza-
tion and implement filtering algorithms for the extraction and
categorization of failure events. Failure data from Blue Gene/P
and Blue Waters supercomputers were analyzed in [23]
and [22], respectively. In [23], they analyzed both Reliability,
Availability, and Serviceability (RAS) logs and job logs. In
[22] performed statistical analysis with some distributions,
analysis of system-wide outages, and characterization of the
root causes of failures. Unlike [19] and [23], we use the
failure and workload logs of five years; this allows us to
perform comparative, time series and failure rate analysis of
both failure and workload data.

Our analysis was developed with datasets from the Titan
supercomputer, and it is important to recognize other failure
studies for the same supercomputer. In [24], [10], [9] the
authors analyzed Titan GPU errors from different perspectives.
They included analysis of SBE, DBE and DPR errors, tempo-
ral and spatial characteristics of GPU failures, error frequency
and the effect of soft-errors. Our study takes into account
GPU errors too, but we did not analyze these failures deeply.
In [25], [7], [26], they also used Titan failures. Not only
did they analyze GPU failures, but also they analyzed failure
events related to processor, memory, and system-user software.
In [7], the authors performed a failure characterization with
statistical analysis for an entire year, a quantitative analysis
of the impact of failures on the workload of Titan, and they
described a series of recommendations for understanding the



interplay between failures and workload on large supercom-
puters. Nevertheless, they only use a one-year dataset.

VIII. CONCLUSIONS AND FUTURE WORK

Large supercomputers have provided the required process-
ing power to push the envelope in many scientific fields. Larger
systems address the challenges in areas as diverse as astro-
physics and molecular dynamics. However, these extreme-
scale systems integrate an immense amount of components
that make them vulnerable to failures and hard to keep effi-
cient. An understanding of the inner workings of the machine
is pivotal to maintaining a HPC systems’ productivity. Our
analysis of failure and workload records of a leadership-class
supercomputer shows that GPU-related components are highly
vulnerable, to even double-bit errors. We found the Weibull
distribution closely matches the MTBF data, outpowering
other popular distributions. With the exception of software fail-
ures of the system, there is little correlation between failures
and usage of the supercomputer. We provided support for the
hypothesis that users are behind software system failures.

We plan on extending the current analysis by looking at user
failures, a whole big category of events that were left out of
the scope of this paper. In addition, we will analyze failure on
particular components to better understand the reliability of a
component by itself and create a model that predicts failure
on a system that uses those components.
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